如圖,已知矩形ABCD中,AB=8cm,BC=6cm,如果點P由C出發(fā)沿CA方向向點A勻速運動,同時點Q由A出發(fā)沿AB方向向點B勻速運動,它們的速度均為2cm/s,連接PQ,設(shè)運動的時間為t.(單位:s).(0≤t≤4)解答下列問題:
(1)求AC的長;
(2)當(dāng)t為何值時,PQ∥BC;
(3)設(shè)△AQP的面積為S(單位:cm2),當(dāng)t為何值時,s=cm2;
(4)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.

【答案】分析:(1)根據(jù)勾股定理直接求出AC的長即可;
(2)由PQ∥BC時的比例線段關(guān)系,列一元一次方程求解;
(3)如圖2所示,過P點作PD⊥AC于點D,構(gòu)造比例線段,求得PD,從而可以得到S的表達(dá)式,然后利用s=cm2求出即可;
(4)要點是利用(3)中求得的△AQP的面積表達(dá)式,再由線段PQ恰好把△ABC的面積平分,列出一元二次方程;由于此一元二次方程的判別式小于0,則可以得出結(jié)論:不存在這樣的某時刻t,使線段PQ恰好把△ABC的面積平分;
解答:解:(1)∵AB=8cm,BC=6cm,
∴AC==10(cm);

(2)當(dāng)PQ∥BC時,
∵CP=2t,則AP=10-2t.
∵PQ∥BC,
=,即=
解得:t=
∴當(dāng)t=s時,PQ∥BC.

(3)如圖2所示,過P點作PD⊥AC于點D.
∴PD∥BC,
=
=,
解得:PD=6-t.
S=×AQ×PD=×2t×(6-t)
=-t2+6t=
整理得出:
t2-5t+6=0,
(t-2)(t-3)=0,
解得:t1=2,t2=3,
故當(dāng)t為2或3時,s=cm2;

(4)假設(shè)存在某時刻t,使線段PQ恰好把△ABC的面積平分,
則有S△AQP=S△ABC,而S△ABC=AC•BC=24,
∴此時S△AQP=12.
由(2)可知,S△AQP=-t2+6t,
∴-t2+6t=12,化簡得:t2-5t+10=0,
∵△=(-5)2-4×1×10=-15<0,此方程無解,
∴不存在某時刻t,使線段PQ恰好把△ABC的面積平分.
點評:此題考查了相似三角形線段比例關(guān)系、勾股定理一元一次方程的解法、一元二次方程的解法與判別式等知識點,涉及的考點眾多,計算量偏大,有一定的難度.本題考查知識點非常全面,是一道測試學(xué)生綜合能力的好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當(dāng)x為何值時,△MAN為等腰直角三角形?
(2)當(dāng)x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認(rèn)為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標(biāo)系,用運動時間t(秒)表示點D的坐標(biāo);
(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當(dāng)t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊答案