【題目】如圖,在等腰Rt△ABC中,∠C=90°,D是斜邊上AB上任一點(diǎn),AE⊥CD于E,BF⊥CD交CD的延長(zhǎng)線于F,CH⊥AB于H點(diǎn),交AE于G.
(1)試說(shuō)明AH=BH
(2)求證:BD=CG.
(3)探索AE與EF、BF之間的數(shù)量關(guān)系
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)AE=EF+BF,理由見(jiàn)解析
【解析】試題分析:
(1)根據(jù)等腰三角形的三線合一證明;
(2)證明△ACG≌△CBD,根據(jù)全等三角形的性質(zhì)證明;
(3)證明△ACE≌△CBF即可.
試題解析:
(1)∵AC=BC,CH⊥AB∴AH=BH
(2)∵ABC為等腰直角三角形,且CH⊥AB
∴∠ACG=45°
∵∠CAG+∠ACE=90°,∠BCF+∠ACE=90°
∴∠CAG=∠BCF
在△ACG和△CBD中
∴△ACG≌△CBD(ASA)
∴BD=CG
(3)AE=EF+BF
理由如下:
在△ACE和△CBF中,
∴△ACE≌△CBF,
∴AE=CF,CE=BF,
∴AE=CF=CE+EF=BF+EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對(duì)角線AC、BD應(yīng)滿足條件__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為、(0,2),P是△AOB外接圓上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的坐標(biāo)為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A(﹣1,0),C(1,4),點(diǎn)B在x軸上,且AB=4.
(1)求點(diǎn)B的坐標(biāo),并畫(huà)出△ABC;
(2)求△ABC的面積;
(3)在y軸上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則折痕EF的長(zhǎng)為( )
A.6 B.12 C.2 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三個(gè)連續(xù)正整數(shù)的和不大于12.這樣的正整數(shù)有_______________組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 在學(xué)習(xí)了全等三角形和等邊三角形的知識(shí)后,張老師出了如下一道題:如圖,點(diǎn)B是線段AC上任意一點(diǎn),分別以AB、BC為邊在AC同一側(cè)作等邊△ABD和等邊△BCE,連接CD、AE分別與BE和DB交于點(diǎn)N、M,連接MN.
(1)求證:△ABE≌△DBC.
接著張老師又讓學(xué)生分小組進(jìn)行探究:你還能得出什么結(jié)論?
精英小組探究的結(jié)論是:AM=DN.
奮斗小組探究的結(jié)論是:△EMB≌△CNB.
創(chuàng)新小組探究的結(jié)論是:MN∥AC.
(2)你認(rèn)為哪一小組探究的結(jié)論是正確的?
(3)選擇其中你認(rèn)為正確的一種情形加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com