【題目】如圖,在中,點(diǎn)邊上(端點(diǎn)除外)的一個動點(diǎn),過點(diǎn)作直線.設(shè)的平分線于點(diǎn),交的外角平分線于點(diǎn),連接

那么當(dāng)點(diǎn)運(yùn)動到何處時,四邊形是矩形?并說明理由.

的前提下滿足什么條件,四邊形是正方形?(直接寫出答案,無需證明)

【答案】(1)當(dāng)點(diǎn)運(yùn)動到中點(diǎn)時,四邊形是矩形,理由詳見解析;(2)的前提下,滿足時,四邊形是正方形,理由詳見解析.

【解析】

(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行線的性質(zhì)有∠1=∠3,等量代換有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可證四邊形AECF是平行四邊形,又CE、CF分別是∠BCA及其外角的角平分線,易證∠ECF90°,從而可證四邊形AECF是矩形.

(2)由(1)得出四邊形AECF是矩形,再由平行線得出AC⊥EF,得出四邊形AECF是菱形,即可得出結(jié)論.

當(dāng)點(diǎn)運(yùn)動到中點(diǎn)時,四邊形是矩形;理由如下:

如圖所示:

平分,

,

,

,

同理,

,

,

四邊形是平行四邊形,

的外角平分線,

,

,

,

平行四邊形是矩形.

的前提下,滿足時,四邊形是正方形;理由如下:

得:當(dāng)點(diǎn)運(yùn)動到的中點(diǎn)時,四邊形是矩形,

,當(dāng)時,

,

四邊形是菱形,

四邊形是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,點(diǎn)是對角線上的動點(diǎn)(不與、重合),設(shè),

的函數(shù)解析式,并指出的取值范圍;

連接,當(dāng)是等腰三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形中,,,四邊形的三個頂點(diǎn)、、分別在矩形、、上,

如圖,當(dāng)四邊形為正方形時,求的面積;

如圖,當(dāng)四邊形為菱形時,設(shè),的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,分別是的中點(diǎn),連接,

(1)求證:;

(2)試確定,當(dāng)菱形再滿足一個什么條件時,四邊形為矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,點(diǎn)是對角線上一點(diǎn),且,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知、,添加下列條件后,不能判斷四邊形為菱形的是(

A. 平分

B.

C. 為中線

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形中,,,四邊形的三個頂點(diǎn)、分別在矩形、、上,

如圖,當(dāng)四邊形為正方形時,求的面積;

如圖,當(dāng)四邊形為菱形時,設(shè),的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,平分平分,試判斷四邊形的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列問題,列出關(guān)于的方程,并將其化為一元二次方程的一般形式

(1)有一個三位數(shù),它的個位數(shù)字比十位數(shù)字大,十位數(shù)字比百位數(shù)字小,三個數(shù)字的平方和的倍比這個三位數(shù)小,求這個三位數(shù).

(2)如果一個直角三角形的兩條直角邊長之和為,面積為,求它的兩條直角邊的長.

查看答案和解析>>

同步練習(xí)冊答案