(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為_________
②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為_________;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.
(1)①;②;(2)△CEF與△ABC相似.理由詳見解析.

試題分析:(1)①如圖1,有△CEF與△ABC相似,可得∠CEF=∠A=45°,由題意知△CEF≌△DEF,所以CE=DE,∠DEF=∠CEF=45°,所以∠DEC=90°,即∠AED=90°,又∠A=45°,所以△AED是等腰直角三角形,所以AE=DE,所以AE=CE=1,根據(jù)勾股定理可求得AD=.②分兩種情況:一、當(dāng)△CEF∽△CAB時(shí),如圖2,則有∠CEF=∠CAB,所以EF∥AB,根據(jù)題意,點(diǎn)C與點(diǎn)D關(guān)于直線EF對(duì)稱,所以CD⊥EF,所以CD⊥AB,由三角形的面積公式可求得CD=2.4,在△ACD中,由勾股定理可得AD=;二、當(dāng)△CFE∽△CAB時(shí),如圖3,此時(shí)有∠A=∠CFE, ∠B=∠CEF,又∠A+∠B=90°,所以∠A+∠CEF="90°," ∠B+∠CFE=90°,前面已證EF⊥CD,所以∠DCE+∠CEF=90°,∠DCF+∠CFE=90°,所以∠A=∠ACD, ∠B=∠BCD,所以AD=CD=BD=2.5;(2)利用折疊前后對(duì)應(yīng)的部分關(guān)于折疊線對(duì)稱,以及直角三角形斜邊上的中線等于斜邊的一半,即可求得∠A=∠CFE, ∠B=∠CEF,所以得證.
 
試題解析:(1)①;②
(2)△CEF與△ABC相似.理由如下:
如圖,連接CD,與EF交于點(diǎn)Q.
∵CD是Rt△ABC的中線,
∴CD=DB=AB,∴∠DCB=∠B.
由折疊性質(zhì)可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ECF=∠BCA,
∴△CEF∽△CBA.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=2∠C,BD平分∠ABC,且,,求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

提出問題

如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
類比探究
如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.
拓展延伸
如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.

(1)求證:△ABF∽△DFE
(2)若△BEF也與△ABF相似,請(qǐng)求出的值 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AF和CE。

(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長(zhǎng);
(3)在線段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?若存在,請(qǐng)說(shuō)明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

(1)如圖1,在△ABC中,點(diǎn)D、E、Q分別在AB、AC、BC上,且DE//BC,AQ交DE于點(diǎn)P,求證:

(2)如圖,△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).
①如圖2,若AB=AC=1,直接寫出MN的長(zhǎng);
②如圖3,求證:MN=DM·EN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知△ADE∽△ABC,AD=2,BD=4,DE=1.5,則BC的長(zhǎng)為         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列幾個(gè)命題中正確的有:(   )
(l)四條邊相等的四邊形都相似;(2)四個(gè)角都相等的四邊形都相似;
(3)三條邊相等的三角形都相似;(4)所有的正六邊形都相似 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則    

查看答案和解析>>

同步練習(xí)冊(cè)答案