如圖,已知AB是⊙O的直徑,M,N分別是AO,BO的中點,CM⊥AB,DN⊥AB.求證:
AC
=
BD

證明:連結(jié)OC、OD,如圖,
∵AB是⊙O的直徑,M,N分別是AO,BO的中點,
∴OM=ON,
∵CM⊥AB,DN⊥AB,
∴∠OMC=∠OND=90°,
在Rt△OMC和Rt△OND中,
OM=ON
OC=OD

∴Rt△OMC≌Rt△OND(HL),
∴∠COM=∠DON,
AC
=
BD

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB為⊙O的直徑,∠B=60°,∠C=70°,則∠AOD的度數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點A、B、C在⊙O上,若∠AOB的度數(shù)為80°,則∠ACB的度數(shù)是( 。
A.80°B.40°C.160°D.20°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小明學習了垂徑定理,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
(1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點,直線CD⊥AB于點E,則AE=BE.請證明此結(jié)論;
(2)從圓上任意一點出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點,直線CD⊥PA于點E,則AE=PE+PB.可以通過延長DB、AP相交于點F,再連接AD證明結(jié)論成立.請寫出證明過程;
(3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點,直線CD⊥PA于點E,則AE,PE與PB之間存在怎樣的數(shù)量關(guān)系?寫出結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O在△ABC三邊上截得的弦長相等,∠A=70°,則∠BOC=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在⊙O中,弦AB、CD交于點E,AD=CB.求證:AE=CE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知⊙O的半徑為
1
2
,銳角△ABC內(nèi)接于⊙O,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( 。
A.OM的長B.2OM的長C.CD的長D.2CD的長

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的直徑為10,在⊙O上位于直徑AB的異側(cè)有定點C和動點P,已知BC:CA=4:3,點P在半圓弧AB上運動(不與A、B兩點重合),過點C作CP的垂線CD交PB的延長線于D點.
(1)求證:AC•CD=PC•BC;
(2)當點P運動到AB弧中點時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的直徑CD過弦EF的中點G,∠EOD=40°,求∠DCF的度數(shù).

查看答案和解析>>

同步練習冊答案