【題目】抗震救災(zāi)中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到具有較強抗震功能的A、B兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到A、B兩庫的路程和運費如下表:(表中“元/噸千米”表示每噸糧食運送1千米所需人民幣)
路程(千米) | 運費(元/噸千米) | |||
甲庫 | 乙?guī)?/span> | 甲庫 | 乙?guī)?/span> | |
A庫 | 20 | 15 | 12 | 12 |
B庫 | 25 | 20 | 10 | 8 |
(1)若甲庫運往A庫糧食x噸,請寫出將糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關(guān)系式;
(2)當(dāng)甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?
【答案】(1)y=-30x+39200(0≤x≤70);(2) 從甲庫運往A庫70噸糧食,往B庫運送30噸糧食,從乙?guī)爝\往A庫0噸糧食,從乙?guī)爝\往B庫80噸糧食時,總運費最省為37100元
【解析】
試題弄清調(diào)動方向,再依據(jù)路程和運費列出y(元)與x(噸)的函數(shù)關(guān)系式,最后可以利用一次函數(shù)的增減性確定“最省的總運費”.
試題解析:(1)依題意有:若甲庫運往A庫糧食x噸,則甲庫運到B庫(100-x)噸,乙?guī)爝\往A庫(70-x)噸,乙?guī)爝\到B庫(10+x)噸.
則,解得:0≤x≤70.
y=12×20x+10×25(100-x)+12×15(70-x)+8×20×[110-(100-x)]
=-30x+39200
其中0≤x≤70
(2)上述一次函數(shù)中k=-30<0
∴y隨x的增大而減小
∴當(dāng)x=70噸時,總運費最省
最省的總運費為:-30×70+39200=37100(元)
答:從甲庫運往A庫70噸糧食,往B庫運送30噸糧食,從乙?guī)爝\往A庫0噸糧食,從乙?guī)爝\往B庫80噸糧食時,總運費最省為37100元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC與BD交于O,下列條件中不一定能判定這個四邊形是平行四邊形的是( 。
A. AB=DC,AD=BC B. AD∥BC,AB∥DC
C. OA=OC,OB=OD D. AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BC中,AC=BC,點D、E分別是邊AB、AC的中點.延長DE到點F,使DE=EF,得四邊形ADCF.若使四邊形ADCF是正方形,則應(yīng)在△ABC中再添加一個條件為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l1:y=﹣x+4分別與x軸、y軸交于點A、點B,且與直線l2:y=x于點C.
(1)如圖①,求出B、C兩點的坐標(biāo);
(2)若D是線段OC上的點,且△BOD的面積為4,求直線BD的函數(shù)解析式.
(3)如圖②,在(2)的條件下,設(shè)P是射線BD上的點,在平面內(nèi)是否存在點Q,使以O、B、P、Q為頂點的四邊形是菱形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.
請根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為;
(2)請補全條形統(tǒng)計圖;
(3)該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200× =108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E,F(xiàn)分別是線段BC,AD的中點,AB=2,AD=4,動點P沿EC,CD,DF的路線由點E運動到點F,則△PAB的面積s是動點P運動的路徑總長x的函數(shù),這個函數(shù)的大致圖象可能是
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:如何使用尺規(guī)完成“過直線l外一點A作已知直線l的平行線”.
小云的作法如下:
(1)在直線l 上任取一點B,以點B為圓心,AB長為半徑作弧, 交直線l 于點C;
(2)分別以A,C為圓心,以AB長為半徑作弧,兩弧相交于點D;
(3)作直線AD.
所以直線AD即為所求.
老師說:“小云的作法正確”.
請回答:小云的作圖依據(jù)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2013年1月7日起,中國中東部大部分地區(qū)持續(xù)出現(xiàn)霧霾天氣.某市記者為了了解”霧霾天氣的主要原因“,隨機調(diào)查了該市部分市民,并對調(diào)查結(jié)果進行整理.繪制了如下尚不完整的統(tǒng)計圖表.
組別 | 觀點 | 頻數(shù)(人數(shù)) |
A | 大氣氣壓低,空氣不流動 | 80 |
B | 地面灰塵大,空氣濕度低 | m |
C | 汽車尾氣排放 | n |
D | 工廠造成的污染 | 120 |
E | 其他 | 60 |
請根據(jù)圖表中提供的信息解答下列問題:
(1)填空:m= , n= . 扇形統(tǒng)計圖中E組所占的百分比為%;
(2)若該市人口約有100萬人,請你估計其中持D組“觀點”的市民人數(shù);
(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人持C組“觀點”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com