精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知∠ADE60°DF平分∠ADE,∠130°,求證:DF∥BE

證明:∵DF平分∠ADE(已知)

__________ADE

∵∠ADE60°(已知)

∴_________________30°( )

∵∠130°(已知)

∴____________________( )

∴____________________( )

【答案】∠FDE 角平分線的定義 ∠FDE 等量代換 ∠1=∠FDE

等量代換 DF∥BE 內錯角相等,兩直線平行

【解析】試題分析由角平分線的定義得出∠EDF=ADE=30°,得出∠1=EDF即可得出結論.

試題解析DF平分∠ADE,(已知)

∴∠EDF=ADE.(角平分線定義)

∵∠ADE=60°,(已知)

∴∠EDF=30°.(等量代換

∵∠1=30°,(已知)

∴∠1=EDF,(等量代換)

DFBE(內錯角相等,兩直線平行)

故答案為:∠EDF,角平分線定義;EDF,等量代換1=EDF,等量代換DFBE,內錯角相等兩直線平行.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC的面積為24,點D在線段AC上,點F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為(

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠BAC=50°

(1)若點I是∠ABC,ACB的角平分線的交點,則∠BIC= °.

(2)若點D是∠ABC,ACB的外角平分線的交點,則∠BDC= °.

(3)若點E是∠ABC,ACG的平分線的交點,探索∠BEC與∠BAC的數量關系,并說明理由.

(4)在(3)的條件下,若CEAB,求∠ACB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知數軸上點A表示的數為6,B是數軸上一點,且AB10.動點P從點O出發(fā),以每秒6個單位長度的速度沿數軸向右勻速運動,設運動時間為tt0)秒.

1)寫出數軸上點B表示的數   ;當t3時,OP   

2)動點R從點B出發(fā),以每秒8個單位長度的速度沿數軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時追上點P?

3)動點R從點B出發(fā),以每秒8個單位長度的速度沿數軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時PR相距2個單位長度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現代互聯(lián)網技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展,小明計劃給朋友快遞一部分物品,經了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.
(1)根據題意,填寫下表:

重量(千克)
費用(元)

0.5

1

3

4

甲公司

22

67

乙公司

11

51


(2)請分別寫出甲乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數關系式;
(3)小明應選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,一次函數y=x+3的圖象與x軸交于點A,二次函數y=x2+mx+n的圖象經過點A.
(1)當m=4時,求n的值;
(2)設m=﹣2,當﹣3≤x≤0時,求二次函數y=x2+mx+n的最小值;
(3)當﹣3≤x≤0時,若二次函數﹣3≤x≤0時的最小值為﹣4,求m、n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°,ABCD,MBC邊上的一點,且AM平分∠BAD,DM平分∠ADC.

求證:(1)AMDM;

(2)MBC的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的頂點分別為A(2,4),B(﹣2,2),C(3,1).

(1)作出ABC關于x軸對稱的圖形DEF寫出頂點D、EF的坐標

(2)如果點H(3m﹣1,n﹣6)與點H′(2n+7,3m﹣9)關于y軸對稱,m,n的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A,D,E三點共線,C,B,F三點共線,AB=CD,AD=CB,DE=BF,那么BE與DF之間有什么數量關系?請說明理由.

查看答案和解析>>

同步練習冊答案