A
分析:連接EF交BD于O,易證四邊形EGFH是平行四邊形,然后證明是否得出選項.
解答:
解:連接EF交BD于點O,在平行四邊形ABCD中的AD=BC,∠EDH=∠FBG,
∵E、F分別是AD、BC邊的中點,
∴DE∥BF,DE=BF=
BC,
∴四邊形AEFB是平行四邊形,有EF∥AB,
∵點E是AD的中點,
∴點O是BD的中點,根據(jù)平行四邊形中對角線互相平分,故點O也是AC的中點,也是EF的中點,故C正確,
又∵BG=DH,∴△DEH≌△BFG,
∴GF=EH,故B正確,
∠DHG=∠BGF,∴∠GHE=∠HGF,
∴△EHG≌△FGH,
∴EG=HF,故D正確,
∴GF∥EH,即四邊形EHFG是平行四邊形,而不是矩形,故∠GFH不是90度,
∴A不正確.
故選A.
點評:本題利用了平行四邊形的性質(zhì),全等三角形的判定和性質(zhì),中點的性質(zhì)求解.