【題目】現(xiàn)定義運算“※”,對于任意實數(shù)a、b,都有a※b=a2-3a+b,如:3※5323×3+5,若x※2=6,則實數(shù)x的值是 ___________

【答案】4-1

【解析】

試題根據(jù)題中的新定義化簡所求式子,計算即可得到結(jié)果.

根據(jù)題意得:2★-1=22-3×2-1=4-6-1=-3;

x★2=6變形得:x2-3x+2=6,即(x-4)(x+1=0,

解得:x=-14

故答案為: -14

考點: 實數(shù)的運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:

(1)請你根據(jù)圖中A,B兩點的位置,分別寫出它們所表示的有理數(shù).
(2)請問A,B兩點之間的距離是多少?
(3)在數(shù)軸上畫出與點A的距離為2的點(用不同于A,B的其它字母表示),并寫出這些點表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關(guān)于點C成中心對稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當(dāng)∠ACB為多少度時,四邊形ABDE為矩形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,A(4,0),C(0,6),點B在第一象限內(nèi),點P從原點O出發(fā),以每秒2個單位長度的速度沿著長方形OABC移動一周(即:沿著O→A→B→C→O的路線移動)

(1)寫出B點的坐標(biāo)();
(2)當(dāng)點P移動了4秒時,在圖中平面直角坐標(biāo)系中描出此時P點的位置,并求出點P的坐標(biāo);
(3)在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,求點P移動的時間t.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:
(1)
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】就算下面各題
(1) × ﹣5
(2)
(3)( )( + )+2
(4) ﹣(1﹣ 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】|m﹣2|+(n﹣1)2=0,則m+2n的值為(  )

A. ﹣1 B. 4 C. 0 D. ﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,高AD、BE相交于點H,BC=,在BE上截取BG=2,以GE為邊作等邊三角形GEF,則ABH與GEF重疊(陰影)部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.

小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉(zhuǎn)中心將△ABP逆時針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點A落在A′C上時,此題可解(如圖2).

(1)請你回答:AP的最大值是

(2)參考小偉同學(xué)思考問題的方法,解決下列問題:

如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點,請寫出求AP+BP+CP的最小值長的解題思路.

提示:要解決AP+BP+CP的最小值問題,可仿照題目給出的做法.把△ABP繞B點逆時針旋轉(zhuǎn)60,得到△A′BP′.

①請畫出旋轉(zhuǎn)后的圖形

②請寫出求AP+BP+CP的最小值的解題思路(結(jié)果可以不化簡).

查看答案和解析>>

同步練習(xí)冊答案