解:設(shè)∠POA=θ,則∠POB=30°-θ,作PM⊥OA與OA相交于M,并將PM延長一倍到E,即ME=PM.
作PN⊥OB與OB相交于N,并將PN延長一倍到F,即NF=PN.
連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長最短的三角形.
∵OA是PE的垂直平分線,
∴EQ=QP;
同理,OB是PF的垂直平分線,
∴FR=RP,
∴△PQR的周長=EF.
∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°-θ)=60°,
∴△EOF是正三角形,
∴EF=10,即在保持OP=10的條件下△PQR的最小周長為10.
故答案為:10.
分析:先畫出圖形,作PM⊥OA與OA相交于M,并將PM延長一倍到E,即ME=PM.作PN⊥OB與OB相交于N,并將PN延長一倍到F,即NF=PN.連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長最短的三角形.再根據(jù)線段垂直平分線的性質(zhì)得出△PQR=EF,再根據(jù)三角形各角之間的關(guān)系判斷出△EOF的形狀即可求解.
點評:本題考查的是最短距離問題,解答此類題目的關(guān)鍵根據(jù)軸對稱的性質(zhì)作出各點的對稱點,即把求三角形周長的問題轉(zhuǎn)化為求線段的長解答.