【題目】已知拋物線yax2bxc經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P是直線l上的一個(gè)動點(diǎn),當(dāng)PAC的周長最小時(shí),求點(diǎn)P的坐標(biāo);

【答案】(1)拋物線的解析式為:y=-x2+2x+3;(2) P點(diǎn)的坐標(biāo)為(1,2).

【解析】

試題(1)根據(jù)函數(shù)圖象經(jīng)過的三點(diǎn),用待定系數(shù)法確定二次函數(shù)的解析式即可;

(2)根據(jù)AC是定值,得到當(dāng)PA+PC最小時(shí),△PAC的周長最小,A點(diǎn)關(guān)于直線L的對稱點(diǎn)為點(diǎn)B,連接BC交直線L與點(diǎn)P即可得.

試題解析:(1)將三點(diǎn)坐標(biāo)分別代入解析式,解方程組得:a=-1 b=2 c=3,∴拋物線的解析式為:y=-x2+2x+3;

(2) ∵AC長為定值,∴當(dāng)PA+PC值為最小時(shí),△PAC的周長最小.

A點(diǎn)關(guān)于直線L的對稱點(diǎn)為點(diǎn)B,連接BC交直線L與點(diǎn)P,P點(diǎn)的橫坐標(biāo)為1,

直線BC的解析式為:y=-x+3

∴當(dāng)x=1時(shí),y=2,∴P點(diǎn)的坐標(biāo)為(1,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.為了解全國中學(xué)生視力的情況,應(yīng)采用普查的方式

B.某種彩票中獎的概率是,買1000張這種彩票一定會中獎

C.2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200名學(xué)生

D.從只裝有白球和綠球的袋中任意摸出一個(gè)球,摸出黑球是確定事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點(diǎn)D.延長CA交⊙O于點(diǎn)E,BH是⊙O的切線,作CHBH.垂足為H

1)求證:BEBH;

2)若AB5,tanCBE2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分在如圖的方格中,OAB的頂點(diǎn)坐標(biāo)分別為O0,0、A﹣2,﹣1、B﹣1,﹣3O1A1B1OAB是關(guān)于點(diǎn)P為位似中心的位似圖形

1在圖中標(biāo)出位似中心P的位置,并寫出點(diǎn)的坐標(biāo)及O1A1B1OAB的相似比;

2以原點(diǎn)O為位似中心,在y軸的左側(cè)畫出OAB的一個(gè)位似OA2B2,使它與OAB的位似比為2:1,并寫出點(diǎn)B的對應(yīng)點(diǎn)B2的坐標(biāo);

32條件下,若點(diǎn)Ma,bOAB邊上一點(diǎn)不與頂點(diǎn)重合,寫出M在OA2B2中的對應(yīng)點(diǎn)M2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線 分別為x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P(0,m)y軸上一個(gè)動點(diǎn),若以點(diǎn)P為圓心的圓Px軸和直線l都相切,則m的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時(shí)停止.甲車行駛一段時(shí)間后,因故停車0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時(shí)間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某一個(gè)函數(shù)給出如下定義:對于函數(shù)y,若當(dāng),函數(shù)值y滿足,且滿足,則稱此函數(shù)為“k屬和合函數(shù)”

例如:正比例函數(shù),當(dāng)時(shí),,則,求得:,所以函數(shù)為“3屬和合函數(shù)”.

1)①一次函數(shù)為“k屬和合函數(shù)”,則k的值為______,

②若一次函數(shù)為“1屬和合函數(shù)”,求a的值;

2)反比例函數(shù))是“k屬和合函數(shù)”,且,請求出的值;

3)已知二次函數(shù),當(dāng)時(shí),y是“k屬和合函數(shù)”,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yx2+bx經(jīng)過點(diǎn)A2,0).直線yx2x軸交于點(diǎn)B,與y軸交于點(diǎn)C

1)求這條拋物線的表達(dá)式和頂點(diǎn)的坐標(biāo);

2)將拋物線yx2+bx向右平移,使平移后的拋物線經(jīng)過點(diǎn)B,求平移后拋物線的表達(dá)式;

3)將拋物線yx2+bx向下平移,使平移后的拋物線交y軸于點(diǎn)D,交線段BC于點(diǎn)P、Q,(點(diǎn)P在點(diǎn)Q右側(cè)),平移后拋物線的頂點(diǎn)為M,如果DPx軸,求∠MCP的正弦值.

查看答案和解析>>

同步練習(xí)冊答案