【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E是邊BC上的兩個(gè)點(diǎn),且BD=DE=EC,過點(diǎn)C作CF∥AB交AE延長線于點(diǎn)F,連接FD并延長與AB交于點(diǎn)G;
(1)求證:AC=2CF;
(2)連接AD,如果∠ADG=∠B,求證:CD2=ACCF.
【答案】
(1)證明:∵BD=DE=EC,
∴BE=2CE,
∵CF∥AB,
∴△ABE∽△FCE,
∴ =2,即AB=2FC,
又∵AB=AC,
∴AC=2CF;
(2)證明:如圖,
∵∠1=∠B,∠DAG=∠BAD,
∴△DAG∽△BAD,
∴∠AGD=∠ADB,
∴∠B+∠2=∠5+∠6,
又∵AB=AC,∠2=∠3,
∴∠B=∠5,
∴∠3=∠6,
∵CF∥AB,
∴∠4=∠B,
∴∠4=∠5,
則△ACD∽△DCF,
∴ ,即CD2=ACCF.
【解析】(1)由BD=DE=EC知BE=2CE,由CF∥AB證△ABE∽△FCE得 =2,即AB=2FC,根據(jù)AB=AC即可得證;(2)由∠1=∠B證△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,結(jié)合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,繼而知∠4=∠5,即可證△ACD∽△DCF得CD2=ACCF.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角)),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣3,0),(0,6).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C從點(diǎn)B出發(fā),沿射線BO方向以每秒2個(gè)單位的速度運(yùn)動(dòng),以CP,CO為鄰邊構(gòu)造PCOD,在線段OP延長線上取點(diǎn)E,使PE=AO,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)點(diǎn)C運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),求t的值及點(diǎn)E的坐標(biāo);
(2)當(dāng)點(diǎn)C在線段OB上時(shí),求證:四邊形ADEC為平行四邊形;
(3)在線段PE上取點(diǎn)F,使PF=1,過點(diǎn)F作MN⊥PE,截取FM=2,F(xiàn)N=1,且點(diǎn)M,N分別在一,四象限,在運(yùn)動(dòng)過程中,設(shè)PCOD的面積為S.
①當(dāng)點(diǎn)M,N中有一點(diǎn)落在四邊形ADEC的邊上時(shí),求出所有滿足條件的t的值;
②若點(diǎn)M,N中恰好只有一個(gè)點(diǎn)落在四邊形ADEC的內(nèi)部(不包括邊界)時(shí),直接寫出S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用). A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面.
現(xiàn)有19張硬紙板,裁剪時(shí)x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個(gè)單位,所得新拋物線與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為D.求:(1)點(diǎn)B、C、D坐標(biāo);(2)△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M是△ABC的角平分線AT的中點(diǎn),點(diǎn)D、E分別在AB、AC邊上,線段DE過點(diǎn)M,且∠ADE=∠C,那么△ADE和△ABC的面積比是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊EF在△ABC的邊BC上,頂點(diǎn)D、G分別在邊AB、AC上,已知BC=6,△ABC的面積為9,則正方形DEFG的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,對稱軸平行于y軸的拋物線過點(diǎn)A(1,0)、B(3,0)和C(4,6);
(1)求拋物線的表達(dá)式;
(2)現(xiàn)將此拋物線先沿x軸方向向右平移6個(gè)單位,再沿y軸方向平移k個(gè)單位,若所得拋物線與x軸交于點(diǎn)D、E(點(diǎn)D在點(diǎn)E的左邊),且使△ACD∽△AEC(頂點(diǎn)A、C、D依次對應(yīng)頂點(diǎn)A、E、C),試求k的值,并注明方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對九年級(jí)一班、二班各10名學(xué)生進(jìn)行漢字聽寫測試.計(jì)分采用10分制(得分均取整數(shù)),成績達(dá)到6分或6分以上為及格,得到9分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2). 表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | 7.5 | 10 | 4.94 | 80% | 40% |
(1)在表2中,a= , b=;
(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班比一班好;但也有人認(rèn)為一班成績比二班好,請你給出堅(jiān)持一班成績好的兩條理由;
(3)一班、二班獲滿分的中同學(xué)性別分別是1男1女、2男1女,現(xiàn)從這兩班獲滿分的同學(xué)中各抽1名同學(xué)參加“漢字聽寫大賽”,用樹狀圖或列表法求出恰好抽到1男1女兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表,從下表可知:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
下列說法錯(cuò)誤的是( )。
A.拋物線與x軸的另一個(gè)交點(diǎn)為(3,0);
B.函數(shù)的最大值為6;
C.拋物線的對稱軸是直線x=0.5;
D.在對稱軸的左側(cè),y隨x的增大而增大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com