【題目】列方程解應(yīng)用題:

為了豐富社會(huì)實(shí)踐活動(dòng),引導(dǎo)學(xué)生科學(xué)探究,學(xué)校組織七年級(jí)同學(xué)走進(jìn)中國(guó)科技館,親近科學(xué),感受科技魅力.來(lái)到科技館大廳,同學(xué)們就被大廳里會(huì)“跳舞”的“小球矩陣”吸引住了(如圖1).白色小球全部由計(jì)算機(jī)精準(zhǔn)控制,每一只小球可以“懸浮”在大廳上空的不同位置,演繹著曲線(xiàn)、曲面、平面、文字和三維圖案等各種動(dòng)態(tài)造型.
已知每個(gè)小球分別由獨(dú)立的電機(jī)控制.圖2,圖3分別是9個(gè)小球可構(gòu)成的兩個(gè)造型,在每個(gè)造型中,相鄰小球的高度差均為a.為了使小球從造型一(如圖2)變到造型二(如圖3),控制電機(jī)使造型一中的②,③,④,⑥,⑦,⑧號(hào)小球同時(shí)運(yùn)動(dòng),②,③,④號(hào)小球向下運(yùn)動(dòng),運(yùn)動(dòng)速度均為3米/秒;⑥,⑦,⑧號(hào)小球向上運(yùn)動(dòng),運(yùn)動(dòng)速度均為2米/秒,當(dāng)每個(gè)小球到達(dá)造型二的相應(yīng)位置時(shí)就停止運(yùn)動(dòng).已知⑦號(hào)小球比②號(hào)小球晚 秒到達(dá)相應(yīng)位置,問(wèn)②號(hào)小球運(yùn)動(dòng)了多少米?

【答案】解:設(shè)②號(hào)小球運(yùn)動(dòng)了x米,由題意可得方程:
= ,
解方程得:x=2
答:從造型一到造型二,②號(hào)小球運(yùn)動(dòng)了2米
【解析】設(shè)②號(hào)小球運(yùn)動(dòng)了x米,根據(jù)圖中的造型和“②,③,④號(hào)小球向下運(yùn)動(dòng),運(yùn)動(dòng)速度均為3米/秒;⑥,⑦,⑧號(hào)小球向上運(yùn)動(dòng),運(yùn)動(dòng)速度均為2米/秒”列出方程并解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=2 BC=4,點(diǎn)E、F分別是BC、AD的中點(diǎn)

1求證:ABE≌△CDF;

2當(dāng)四邊形AECF為菱形時(shí),求出該菱形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,已知E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線(xiàn)于點(diǎn)F,連接BF.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿(mǎn)足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m+n=﹣3,mn=5,則(2﹣m)(2﹣n)的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鐵路部門(mén)規(guī)定旅客免費(fèi)攜帶行李箱的長(zhǎng)、寬、高之和不超過(guò)160cm,某廠(chǎng)家生產(chǎn)符合該規(guī)定的行李箱,已知行李箱的高為30cm,長(zhǎng)與寬的比為3:2,則該行李箱的長(zhǎng)的最大值為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O是彈力墻MN上一點(diǎn),魔法棒從OM的位置開(kāi)始繞點(diǎn)O向ON的位置順時(shí)針旋轉(zhuǎn),當(dāng)轉(zhuǎn)到ON位置時(shí),則從ON位置彈回,繼續(xù)向OM位置旋轉(zhuǎn);當(dāng)轉(zhuǎn)到OM位置時(shí),再?gòu)腛M的位置彈回,繼續(xù)轉(zhuǎn)向ON位置,…,如此反復(fù).按照這種方式將魔法棒進(jìn)行如下步驟的旋轉(zhuǎn):第1步,從OA0(OA0在OM上)開(kāi)始旋轉(zhuǎn)α至OA1;第2步,從OA1開(kāi)始繼續(xù)旋轉(zhuǎn)2α至OA2;第3步,從OA2開(kāi)始繼續(xù)旋轉(zhuǎn)3α至OA3 , ….

例如:當(dāng)α=30°時(shí),OA1 , OA2 , OA3 , OA4的位置如圖2所示,其中OA3恰好落在ON上,∠A3OA4=120°;
當(dāng)α=20°時(shí),OA1 , OA2 , OA3 , OA4 , OA3的位置如圖3所示,
其中第4步旋轉(zhuǎn)到ON后彈回,即∠A3ON+∠NOA4=80°,而OA3恰好與OA2重合.

解決如下問(wèn)題:
(1)若α=35°,在圖4中借助量角器畫(huà)出OA2 , OA3 , 其中∠A3OA2的度數(shù)是;
(2)若α<30°,且OA4所在的射線(xiàn)平分∠A2OA3 , 在如圖5中畫(huà)出OA1 , OA2 , OA3 , OA4并求出α的值;

(3)若α<36°,且∠A2OA4=20°,則對(duì)應(yīng)的α值是
(4)(選做題)當(dāng)OAi所在的射線(xiàn)是∠AiOAk(i,j,k是正整數(shù),且OAj與OAk不重合)的平分線(xiàn)時(shí),旋轉(zhuǎn)停止,請(qǐng)?zhí)骄浚涸噯?wèn)對(duì)于任意角α(α的度數(shù)為正整數(shù),且α=180°),旋轉(zhuǎn)是否可以停止?寫(xiě)出你的探究思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知:∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說(shuō)明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上的兩點(diǎn)M、N分別表示-5和-2,那么M、N兩點(diǎn)間的距離是( )

A. -5+(-2) B. -5-(-2) C. |-5+(-2)| D. |-2-(-5)|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=15,AC=13,高AD=12,則BC的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案