【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,過(guò)點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)D.
(1)求證:△DAC∽△DBA;
(2)過(guò)點(diǎn)C作⊙O的切線CE交AD于點(diǎn)E,求證:CE=AD;
(3)若點(diǎn)F為直徑AB下方半圓的中點(diǎn),連接CF交AB于點(diǎn)G,且AD=6,AB=3,求CG的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)
【解析】
(1)利用AB為⊙O的直徑和AD是⊙O的切線,判斷出∠ACD=∠BAD=90°,即可得出結(jié)論;
(2)利用切線長(zhǎng)定理判斷出AE=CE,進(jìn)而得出∠DAC=∠ECA,再用等角的余角相等判斷出∠D=∠DCE,得出DE=CE,即可得出結(jié)論;
(3)先求出tan∠ABD的值,進(jìn)而求出GH=2CH,進(jìn)而得出BC=3BH,再求出BC建立方程求出BH,進(jìn)而得出GH,即可得出結(jié)論.
(1)證明:∵AB是⊙O直徑,
∴∠ACD=∠ACB=90°,
∵AD是⊙O的切線,
∴∠BAD=90°,
∴∠ACD=∠BAD=90°,
∵∠D=∠D,
∴△DAC∽△DBA.
(2)證明:∵EA,EC是⊙O的切線,
∴AE=CE,
∴∠DAC=∠ECA,
∵∠ACD=90°,
∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,
∴∠D=∠DCE,
∴DE=CE,
∴AD=AE+DE=CE+CE=2CE,
∴CE=AD.
(3)解:在Rt△ABD中,AD=6,AB=3,
∴tan∠ABD==2,
如圖,過(guò)點(diǎn)G作GH⊥BD于H,
∴tan∠ABD==2,
∴GH=2BH,
∵點(diǎn)F是直徑AB下方半圓的中點(diǎn),
∴∠BCF=45°,
∴∠CGH=45°,
∴CH=GH=2BH,
∴BC=BH+CH=3BH,
在Rt△ABC中,tan∠ABC==2,
∴AC=2BC,
根據(jù)勾股定理得AC2+BC2=AB2,
∴4BC2+BC2=9,
∴BC=,
∴3BH=,
∴BH=,
∴GH=2BH=,
在Rt△CHG中,∠BCF=45°,
∴CG=GH=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣政府計(jì)劃撥款34000元為福利院購(gòu)買彩電和冰箱,已知商場(chǎng)彩電標(biāo)價(jià)為2000元/臺(tái),冰箱標(biāo)價(jià)為1800元/臺(tái),如按標(biāo)價(jià)購(gòu)買兩種家電,恰好將撥款全部用完.
(1)問(wèn)原計(jì)劃購(gòu)買的彩電和冰箱各多少臺(tái)?
(2)購(gòu)買的時(shí)候恰逢商場(chǎng)正在進(jìn)行促銷活動(dòng),全場(chǎng)家電均降價(jià)進(jìn)行銷售,若在不增加縣政府實(shí)際負(fù)擔(dān)的情況下,能否比原計(jì)劃多購(gòu)買3臺(tái)冰箱?請(qǐng)通過(guò)計(jì)算回答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長(zhǎng)方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對(duì)折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求a,k的值及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知C(3,4),以點(diǎn)C為圓心的圓與y軸相切.點(diǎn)A、B在x軸上,且OA=OB.點(diǎn)P為⊙C上的動(dòng)點(diǎn),∠APB=90°,則AB長(zhǎng)度的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后壩底增加的寬度AF的長(zhǎng);
(2)求完成這項(xiàng)工程需要土石多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,2),B(﹣3,4),C(﹣1,6).
(1)畫(huà)出△ABC,并求出BC所在直線的解析式;
(2)畫(huà)出△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)A、點(diǎn)C,交OB于點(diǎn)D,若OA=3,則陰影都分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為美化小區(qū)環(huán)境,物業(yè)計(jì)劃安排甲、乙兩個(gè)工程隊(duì)完成小區(qū)綠化工作.已知甲工程隊(duì)每天綠化面積是乙工程隊(duì)每天綠化面積的2倍,甲工程隊(duì)單獨(dú)完成600m2的綠化面積比乙工程隊(duì)單獨(dú)完成600m2的綠化面積少用2天.
(1)求甲、乙兩工程隊(duì)每天綠化的面積分別是多少m2;
(2)小區(qū)需要綠化的面積為9600m2,物業(yè)需付給甲工程隊(duì)每天綠化費(fèi)為0.3萬(wàn)元,付給乙工程隊(duì)每天綠化費(fèi)為 0.2萬(wàn)元,若要使這次的綠化總費(fèi)用不超過(guò)10萬(wàn)元,則至少應(yīng)安排甲工程隊(duì)工作多少天?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com