如圖①,若二次函數(shù)的圖象與x軸交于點A(-2,0),B(3,0)兩點,點A關于正比例函數(shù)的圖象的對稱點為C。
(1)求b、c的值;
(2)證明:點C 在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)的圖象于點D,連結(jié)AC,交正比例函數(shù)的圖象于點E,連結(jié)AD、CD。如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動,當其中一個到達終點時,另一個隨之停止運動,連結(jié)PQ、QE、PE,設運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC,若存在,求出t的值;若不存在,請說明理由。
(1)。
(2)利用軸對稱和銳角三角函數(shù)求出點C的坐標,代入驗證即可。
(3)存在時刻,使PE平分∠APQ,同時QE平分∠PQC。
【解析】
分析:(1)將A(-2,0),B(3,0)兩點坐標 代入,即可求出b、c的值。
(2)利用軸對稱和銳角三角函數(shù)求出點C的坐標,代入驗證即可。
(3)通過證明△PAE∽△ECQ,求出時間t。
解:(1)∵二次函數(shù)的圖象與x軸交于點A(-2,0),B(3,0)兩點,
∴,解得。
∴。
(2)證明:由(1)得二次函數(shù)解析式為。
在正比例函數(shù)的圖象上取一點F,作FH⊥x軸于點H,則
。∴。
連接AC交 的圖象于點E,作CK 垂直x軸于點K,
∵點A關于的圖象的對稱點為C,
∴OE垂直平分AC。
∵,OA=2,
∴。
在Rt△ACK中,∵,
∴。∴。
∴點C 的坐標為。
將C 代入,左邊=右邊,
∴點C在所求的二次函數(shù)的圖象上。
(3)∵DB⊥x軸交的圖象于點D,B(3,0),
∴把x=3代入得,即BD=。
在Rt△ACK中,,
∵OE垂直平分AC,
∴,。
假設存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC,
則。
∵, ∴。
又∵,∴。
又∵,∴△PAE∽△ECQ!,即。
整理,得,解得(不合題意,舍去)。
∴存在時刻,使PE平分∠APQ,同時QE平分∠PQC。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
6 |
7 |
6 |
7 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
3 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013年湖南省常德市中考數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年江蘇省張家港市九年級第一學期調(diào)研試卷數(shù)學卷 題型:解答題
(本題3分+3分+4分)如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點P,頂點為C()。
(1)求此函數(shù)的關系式;
(2)作點C關于x軸的對稱點D,順次連接A、C、B、D.若在拋物線上存在點E,使直線PE將四邊形ACBD分成面積相等的兩個四邊形,求點E的坐標;
(3)在(2)的條件下,拋物線上是否存在一點F,使得△PEF是以P為直角頂點的直角三角形?若存在,求出點F的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com