【題目】如圖①,直線AB與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點,OA、OB的長度分別為a和b,且滿足a2﹣2ab+b2=0.
(1)判斷△AOB的形狀;
(2)如圖②,△COB和△AOB關(guān)于y軸對稱,D點在AB上,點E在BC上,且AD=BE,試問:線段OD、OE是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?寫出你的結(jié)論并證明;
(3)將(2)中∠DOE繞點O旋轉(zhuǎn),使D、E分別落在AB,BC延長線上(如圖③),∠BDE與∠COE有何關(guān)系?直接說出結(jié)論,不必說明理由.
【答案】(1)△AOB為等腰直角三角形;(2)OD⊥OE;(3)∠BDE與∠COE互余.
【解析】
試題分析:(1)根據(jù)a2﹣2ab+b2=0,可得a=b,又由∠AOB=90°,所以可得出△AOB的形狀;
(2)OD=OE,OD⊥OE,通過證明△OAD≌△OBE可以得證;
(3)由∠DEB+∠BEO=45°,∠ACB=∠COE+∠BEO=45°,得出∠DEB=∠COE,根據(jù)三角形外角的性質(zhì)得出∠ABC=∠BDE+∠DEB=90°,從而得出∠BDE+∠COE=90°,所以∠BDE與∠COE互余.
解:(1)∵a2﹣2ab+b2=0.
∴(a﹣b)2=0,
∴a=b,
又∵∠AOB=90°,
∴△AOB為等腰直角三角形;
(2)OD=OE,OD⊥OE,理由如下:
如圖 ②,∵△AOB為等腰直角三角形,
∴AB=BC,
∵BO⊥AC,
∴∠DAO=∠EBO=45°,BO=AO,
在△OAD和△OBE中,
,
△OAD≌△OBE(SAS),
∴OD=OE,∠AOD=∠BOE,
∵∠AOD+∠DOB=90°,
∴∠DOB+∠BOE=90°,
∴OD⊥OE;
(3)∠BDE與∠COE互余,理由如下:
如圖③,∵OD=OE,OD⊥OE,
∴△DOE是等腰直角三角形,
∴∠DEO=45°,
∴∠DEB+∠BEO=45°,
∵∠ACB=∠COE+∠BEO=45°,
∴∠DEB=∠COE,
∵∠ABC=∠BDE+∠DEB=90°,
∴∠BDE+∠COE=90°
∴∠BDE與∠COE互余.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a+b=0,④b2﹣4ac>0,其中正確結(jié)論個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某沿海開放城市A接到臺風(fēng)警報,在該市正南方向100km的B處有一臺風(fēng)中心,沿BC方向以20km/h的速度向D移動,已知城市A到BC的距離AD=60km,那么臺風(fēng)中心經(jīng)過多長時間從B點移到D點?如果在距臺風(fēng)中心30km的圓形區(qū)域內(nèi)都將有受到臺風(fēng)的破壞的危險,正在D點休閑的游人在接到臺風(fēng)警報后的幾小時內(nèi)撤離才可脫離危險?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商用8000元購進(jìn)了一種襯衫,他以每件58元的價格出售,很快售完,又用17600元購進(jìn)同種襯衫,數(shù)量是第一次的2倍,但每件進(jìn)價比第一次多4元,服裝店仍按每件58元出售,全部售完.
(1)設(shè)他第一次購進(jìn)這種襯衫的價格為x元/件,則他第一次購進(jìn)這種襯衫 件,他第二次購進(jìn)這種襯衫 件;
(2)問他在這次服裝生意中共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時間為x h,兩車之間的距離為y km.當(dāng)兩車均到達(dá)各自終點時,運動停止.如圖是y與x之間函數(shù)關(guān)系的部分圖象.
(1)由圖象知,慢車的速度為 km/h,快車的速度為 km/h;
(2)請在圖中補(bǔ)全函數(shù)圖象;
(3)求當(dāng)x為多少時,兩車之間的距離為300km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個直角∠AOC和∠BOD有公共頂點O,下列結(jié)論:
①∠AOB=∠COD;
②∠AOB+∠COD=;
③若OB平分∠AOC,則OC平分∠BOD;
④∠AOD的平分線與∠BOC的平分線是同一條射線,
其中正確的是 .(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、C、E在同一條直線上,△ABC與△CDE都是等邊三角形,則下列結(jié)論不一定成立的是( )
A.△ACE≌△BCD B.△BGC≌△AFC
C.△DCG≌△ECF D.△ADB≌△CEA
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com