【題目】已知:等腰三角形ABC的面積為30AB=AC= 10,則底邊BC的長度為_________ m.

【答案】

【解析】

CDABD,則∠ADC=BDC=90°,由三角形的面積求出CD,由勾股定理求出AD;分兩種情況:①等腰△ABC為銳角三角形時,求出BD,由勾股定理求出BC即可;②等腰△ABC為鈍角三角形時,求出BD,由勾股定理求出BC即可.

CDABD,
則∠ADC=BDC=90°,ABC的面積=ABCD=×10×CD=30,
解得:CD=6
AD==8m;
分兩種情況:
①等腰△ABC為銳角三角形時,如圖1所示:

BD=ABAD=2m,
BC==
②等腰△ABC為鈍角三角形時,如圖2所示:


BD=AB+AD=18m
BC==;
綜上所述:BC的長為.
故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】秋季運動會上,七年級(1)班的萌萌、路佳、王玉三人一起進行50米賽跑(假定三人均為勻速直線運動).如果當萌萌到達終點時,路佳距終點還有5米,王玉距終點還有10米.那么當路佳到達終點時,王玉距終點還有________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算: 2sin45°+2π01

2先化簡,再求值 a2b2),其中a=,b=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015南寧)如圖,AB是⊙O的直徑,AB=8,點M在⊙O上,∠MAB=20°,N是弧MB的中點,P是直徑AB上的一動點.若MN=1,則PMN周長的最小值為( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長為2的正方形ABCD關于y軸對稱,邊AD在x軸上,點B在第四象限,直線BD與反比例函數(shù)的圖象交于點B、E.

(1)求反比例函數(shù)及直線BD的解析式;

(2)求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點的坐標為,點的坐標為,點軸上一點,且的值最小,

1)確定點的位置,并求點的坐標;

2)求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的方格紙中的每個小正方形的邊長均為1,點AB在小正方形的頂點上.在圖中畫出△ABC(C在小正方形的頂點上),使△ABC為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖(1),O為四邊形ABCD內(nèi)一點,連接OA、OB、OC、OC可以得幾個三角形?它與邊數(shù)有何關系?

(2)如圖(2),O在五邊形ABCDEAB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數(shù)有何關系?

(3)如圖(3),A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數(shù)有何關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD為菱形,△ABD的外接圓⊙O與CD相切于點D,交AC于點E.

(1)判斷⊙O與BC的位置關系,并說明理由;

(2)若CE=2,求⊙O的半徑r.

查看答案和解析>>

同步練習冊答案