【題目】如圖,將三角尺的直角頂點(diǎn)放在直線a上,a//b,∠1=50°,∠2=60°,則∠3的度數(shù)為( )

A.50°
B.60°
C.70°
D.80°

【答案】C
【解析】先根據(jù)三角形內(nèi)角和定理求出∠4的度數(shù),由對(duì)頂角的性質(zhì)可得出∠5的度數(shù),再由平行線的性質(zhì)得出結(jié)論即可.


∵△BCD中,∠1=50°,∠2=60°,
∴∠4=180°-∠1-∠2=180°-50°-60°=70°,
∴∠5=∠4=70°,
∵a//b,
∴∠3=∠5=70°.
故選C.
【考點(diǎn)精析】本題主要考查了對(duì)頂角和鄰補(bǔ)角和平行線的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握兩直線相交形成的四個(gè)角中,每一個(gè)角的鄰補(bǔ)角有兩個(gè),而對(duì)頂角只有一個(gè);兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保證學(xué)生有足夠的睡眠,政協(xié)委員于今年兩會(huì)向大會(huì)提出一個(gè)議案,即“推遲中小學(xué)生早晨上課時(shí)間”,這個(gè)議案當(dāng)即得到不少人大代表的支持.根據(jù)北京市教委的要求,學(xué)生小強(qiáng)所在學(xué)校將學(xué)生到校時(shí)間推遲半小時(shí).小強(qiáng)原來(lái)7點(diǎn)從家出發(fā)乘坐公共汽車,7點(diǎn)20分到校;現(xiàn)在小強(qiáng)若由父母開車送其上學(xué),7點(diǎn)45分出發(fā),7點(diǎn)50分就到學(xué)校了.已知小強(qiáng)乘自家車比乘公交車平均每小時(shí)快36千米,求從小強(qiáng)家到學(xué)校的路程是多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD不與點(diǎn)重合于點(diǎn)于點(diǎn)F,連結(jié)AG

寫出線段長(zhǎng)度之間的數(shù)量關(guān)系,并說(shuō)明理由;

若正方形ABCD的邊長(zhǎng)為,求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( 。
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角△ABC中,∠ACB=30°AB=5,ABC的面積為23

1)若點(diǎn)PAB邊上且CP=,D,E分別為邊AC,BC上的動(dòng)點(diǎn)求△PDE周長(zhǎng)的最小值;

2)假設(shè)一只小羊在△ABC區(qū)域內(nèi),從路邊AB某點(diǎn)出發(fā)跑到水溝邊AC喝水,然后跑向路邊BC吃草,再跑回出發(fā)點(diǎn)處休息,直接寫出小羊所跑的最短路程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一單位長(zhǎng)度為1cm的方格紙上,依如圖所示的規(guī)律,設(shè)定點(diǎn)A1、A2、A3、A4、A5、A6、A7、…、An,連接點(diǎn)O、A1、A2組成三角形,記為1,連接O、A2、A3組成三角形,記為2,連O、An、An+1組成三角形,記為n(n為正整數(shù)),請(qǐng)你推斷,當(dāng)n50時(shí),n的面積=( )cm2.

A. 1275 B. 2500 C. 1225 D. 1250

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,點(diǎn)E、P在邊AB上,且AE=BP,過(guò)點(diǎn)E、P作BC的平行線,分別交AC于點(diǎn)F、Q,記△AEF的面積為S1 , 四邊形EFQP的面積為S2 , 四邊形PQCB的面積為S3

(1)求證:EF+PQ=BC;
(2)若S1+S3=S2 , 求的值;
(3)若S3﹣S1=S2 , 直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五個(gè)點(diǎn),拋物線y=a(x-1)2+k(a>0)經(jīng)過(guò)其中的三個(gè)點(diǎn).
(1)求證:C、E兩點(diǎn)不可能同時(shí)在拋物線y=a(x-1)2+k(a>0)上;
(2)點(diǎn)A在拋物線y=a(x-1)2+k(a>0)上嗎?為什么?
(3)求a和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當(dāng)AB與BC滿足什么關(guān)系時(shí),四邊形AEOF是正方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案