【題目】拋物線與x軸交于A,B兩點(B在點A的右側(cè)),A,B兩點的坐標(biāo)分別為(-2,0),(8,0),y軸交于點C(0,-4),連接BC,BC為一邊,O為對稱中心作菱形BDEC,Px軸上的一個動點設(shè)點P的坐標(biāo)為(m,0),過點Px軸的垂線L交拋物線于點Q,BD于點M.

(1)求拋物線的解析式

(2)當(dāng)點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?

(3)位于第四象限內(nèi)的拋物線上是否存在點N,使得△BCN的面積最大?若存在,求出N點的坐標(biāo),及△BCN面積的最大值;若不存在,請說明理由.

【答案】(1) 拋物線解析式為y=x2-x-4;(2) 當(dāng)m=4,四邊形CQMD是平行四邊形; (3) SBCN= 8.

【解析】

(1)用待定系數(shù)法直接求出拋物線解析式;
(2)由菱形的對稱性可知,點D的坐標(biāo),根據(jù)待定系數(shù)法可求直線BD的解析式,根據(jù)平行四邊形的性質(zhì)可得關(guān)于m的方程,求得m的值;再根據(jù)平行四邊形的判定可得四邊形CQMD的形狀;
(3)先判斷出點N在平行于BC且與拋物線只有一個交點時的位置,確定出點N的坐標(biāo),用面積和差求出三角形BCN的面積.

(1)設(shè)拋物線的解析式為y=ax2+bx+c,

根據(jù)題意得,

拋物線解析式為y=x2-x-4.

(2)C(0,-4),

由菱形的對稱性可知,點D的坐標(biāo)為(0,4).

設(shè)直線BD的解析式為y=kx+b',則解得k=-,b'=4.

直線BD的解析式為y=-x+4.

lx軸,

M的坐標(biāo)為,點Q的坐標(biāo)為.

如圖,當(dāng)MQ=DC時,四邊形CQMD是平行四邊形,

=4-(-4).化簡得m2-4m=0,解得m1=0(不合題意舍去),m2=4.

當(dāng)m=4時,四邊形CQMD是平行四邊形.

(3)存在,理由:

當(dāng)過點N平行于直線BC的直線與拋物線只有一個交點時,BCN的面積最大.

B(8,0),C(0,-4),

BC=4.直線BC解析式為y=x-4,設(shè)過點N平行于直線BC的直線L解析是為y=x+n,

拋物線解析式為y=x2-x-4,聯(lián)立①②得,x2-8x-4(n+4)=0,

Δ=64+16(n+4)=0,

n=-8,

直線L解析式為y=x-8,將n=-8代入中得,x2-8x+16=0

x=4,

y=-6,

N(4,-6),

如圖,過點NNGAB,

SBCN=S四邊形OCNG+SMNG-SOBC=(4+6)×4+(8-4)×6-×8×6=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,邊長為1的正方形網(wǎng)格中,的三個頂點、都在格點上.

1)作關(guān)于關(guān)于軸的對稱圖形,(其中、的對稱點分別是、、),并寫出點坐標(biāo);

2軸上一點,請在圖中畫出使的周長最小時的點(不寫畫法,保留畫圖痕跡),并直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當(dāng)點P第一次回到點A時,點P和直線l同時停止運動.

(1)當(dāng)t=5秒時,點P走過的路徑長為_________;當(dāng)t=_________秒時,點P與點E重合;

(2)當(dāng)點P在AC邊上運動時,連結(jié)PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;

(3)當(dāng)點P在折線AC-CB-BA上運動時,作點P關(guān)于直線EF的對稱點Q.在運動過程中,若形成的四邊形PEQF為菱形,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個頂點坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊ABC 的邊長為 4,AD BC 邊上的中線,F 是邊 AD 上的動點,E 是邊 AC 上的點, 當(dāng) AE=2,且 EF+CF 取得最小值時.

)能否求出ECF 的度數(shù)?_____(用填空);

)如果能,請你在圖中作出點 F(保留作圖痕跡,不寫證明).并直接寫出ECF 的度 數(shù);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,OA1B1是邊長為2的等邊三角形,作B2A2B1OA1B1關(guān)于點B1成中心對稱,再作B2A3B3B2A2B1關(guān)于點B2成中心對稱,如此作下去,則B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,OAC邊上的一個動點,過點O作直線MNBC,設(shè)MNBCA的外角平分線CF于點F,ACB內(nèi)角平分線CEE

1求證:EO=FO;

2當(dāng)點O運動到何處時四邊形AECF是矩形?并證明你的結(jié)論;

3AC邊上存在點O,使四邊形AECF是正方形,猜想ABC的形狀并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.

(1)求拋物線的表達(dá)式;

(2)設(shè)拋物線的對稱軸為l,lx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

(3)如圖2,連接BC,PB,PC,設(shè)PBC的面積為S.

①求S關(guān)于t的函數(shù)表達(dá)式;

②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,CDAB上的中線,且DADBDC

1)已知∠A30°,求∠ACB的度數(shù);

2)已知∠A40°,求∠ACB的度數(shù);

3)已知∠Ax°,求∠ACB的度數(shù);

4)請你根據(jù)解題結(jié)果歸納出一個結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案