【題目】如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于點(diǎn)B,大圓的弦BC⊥AB于點(diǎn)B,過點(diǎn)C作大圓的切線CD交AB的延長(zhǎng)線于點(diǎn)D,連接OC交小圓于點(diǎn)E,連接BE、BO.
(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長(zhǎng)為y: ①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)BE與小圓相切時(shí),求x的值.
【答案】
(1)證明:
∵AB與小圓相切于點(diǎn)A,CD與大圓相切于點(diǎn)C,
∴∠OAB=∠OCD=90°,
∵BC⊥AB,
∴∠CBA=∠CBD=90°,
∵∠1+∠OBC=90°,∠2+∠OCB=90°,
又∵OC=OB,
∴∠OBC=∠OCB,
∴∠1=∠2,
∴△AOB∽△BDC
(2)解:
①過點(diǎn)O作OF⊥BC于點(diǎn)F,則四邊形OABF是矩形,
∴BF=OA=1,
由垂徑定理,得BC=2BF=2,
在Rt△AOB中,OA=1,OB=x
∴AB= ,
由(1)得△AOB∽△BDC
∴ ,即 ,
∴y= ;
②當(dāng)BE與小圓相切時(shí),OE⊥BE,
∵OE=1,OC=x,
∴EC=x﹣1,BE=AB= ,
在Rt△BCE中,根據(jù)勾股定理得:EC2+BE2=BC2,
即(x﹣1)2+( )2=22,
解得:x1=2,x2=﹣1(舍去),
∴當(dāng)BE與小圓相切時(shí),x=2.
【解析】(1)由AB與小圓相切,CD與大圓相切,根據(jù)切線性質(zhì)可得∠OAB與∠OCD相等,都為直角,又BC與AB垂直,根據(jù)垂直定義得到∠CBA與∠CBD都為直角,則∠1+∠OBC與∠2+∠OCB和都為90°,由OC=OB,根據(jù)“等邊對(duì)等角”得到∠OBC=∠OCB,根據(jù)等角的余角相等,得到∠1=∠2,由兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得證;(2)①過O作OF垂直于BC,由三個(gè)角都為直角的四邊形為矩形得到ABOF為矩形,根據(jù)矩形的對(duì)邊相等,得到FB=OA,由OA的長(zhǎng)得到FB的長(zhǎng),又BC為大圓的弦,利用垂徑定理得到BC=2BF,從而求出BC的長(zhǎng),在直角三角形OAB中,由OA=1,OB=x,利用勾股定理表示出AB,由(1)得到的三角形相似得比例,把相應(yīng)的值代入即可得到y(tǒng)與x的關(guān)系式;②當(dāng)BE與小圓相切時(shí),根據(jù)切線性質(zhì)得到OE與BE垂直,由OE和OC表示出EC的長(zhǎng),根據(jù)切線長(zhǎng)定理得到BE=BA,表示出EB,在直角三角形ECB中,由EC,EB及BC的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解即可得到x的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和垂徑定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā),圖中l(wèi)1 , l2表示兩人離A地的距離s(km)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問題:
(1)表示乙離A地的距離與時(shí)間關(guān)系的圖象是(填l1或l2); 甲的速度是km/h,乙的速度是km/h;
(2)甲出發(fā)多少小時(shí)兩人恰好相距5km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AB∥CD,E是BC的中點(diǎn),EF⊥AD于點(diǎn)F,AD=4,EF=5,則梯形ABCD的面積是( )
A.40
B.30
C.20
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若記y=f(x)= ,其中f(1)表示當(dāng)x=1時(shí)y的值, 即f(1)= = ;f( )表示當(dāng)x= 時(shí)y的值,即f( )= ;…;則f(1)+f(2)+f( )+f(3)+f( )+…+f(2011)+f( )= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面圖形:四邊形,三角形,梯形,平行四邊形,菱形,矩形,正方形,圓,從中任取一個(gè)圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積是63,D是BC上的一點(diǎn),且BD:CD=2:1,DE∥AC交AB于E,延長(zhǎng)DE到F,使FE:ED=2:1,則△CDF的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,按要求畫出△A1B1C1和△A2B2C2;
①把△ABC先向右平移4個(gè)單位,再向上平移1個(gè)單位,得到△A1B1C1;
②以圖中的O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com