如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點(diǎn)和點(diǎn)(-2,0),則2a-3b   0.(>、<或=)

試題分析:拋物線y=ax2+bx+c(a≠0)經(jīng)過原點(diǎn),所以,解得c=0,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)(-2,0),即,所以,由圖知拋物線的開口向下,所以a<0; 2a-3b=>0,所以2a-3b>0
點(diǎn)評(píng):本題考查拋物線,解答本題需要掌握拋物線的開口方向與a的關(guān)系,點(diǎn)在拋物線上,則點(diǎn)的坐標(biāo)滿足拋物線的解析式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線與x軸交于A.B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)為D點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0).

(1)求D點(diǎn)的坐標(biāo);
(2)如圖1,連接AC,BD并延長(zhǎng)交于點(diǎn)E,求∠E的度數(shù);
(3)如圖2,已知點(diǎn)P(﹣4,0),點(diǎn)Q在x軸下方的拋物線上,直線PQ交線段AC于點(diǎn)M,當(dāng)∠PMA=∠E時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與 軸交于A(,0),B(2,0),且與軸交于點(diǎn)C.


(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)點(diǎn)P是x軸下方的拋物線上一動(dòng)點(diǎn), 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點(diǎn)P的坐標(biāo);
(3) 在此拋物線上是否存在點(diǎn)Q,使得以A,C,B,Q四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在, 求出Q點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)中,其函數(shù)與自變量之間的部分對(duì)應(yīng)值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)當(dāng)x=-1時(shí),y的值為      ;
(2)點(diǎn)A()、B()在該函數(shù)的圖象上,則當(dāng)時(shí),的大小關(guān)系是      ;
(3)若將此圖象沿x軸向右平移3個(gè)單位,請(qǐng)寫出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式:      ;
(4)設(shè)點(diǎn)P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函數(shù)的圖象上,問:當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長(zhǎng)嗎?為什么?=】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.

(1)求該拋物線的解析式;
(2)當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸的兩個(gè)交點(diǎn)A、B,與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(4,0),C點(diǎn)坐標(biāo)(0,-4).

(1)求拋物線的解析式;
(2)用直尺和圓規(guī)作出△ABC的外接圓⊙M,(不寫作法,保留作圖痕跡),并求⊙M的圓心M的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點(diǎn).

(1)若E、F分別是AB、AC上的點(diǎn),且AE=CF,求證:△AED≌△CFD;
(2)當(dāng)點(diǎn)F、E分別從C、A兩點(diǎn)同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿CA、AB運(yùn)動(dòng),到點(diǎn)A、B時(shí)停止;設(shè)△DEF的面積為y,F(xiàn)點(diǎn)運(yùn)動(dòng)的時(shí)間為x,求y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)F、E分別沿CA、AB的延長(zhǎng)線繼續(xù)運(yùn)動(dòng),求此時(shí)y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則一次函數(shù)的圖象不經(jīng)過(   ).
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,且較小的根為2,則下列結(jié)論:①;②;③關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根;④拋物線的頂點(diǎn)在第四象限。其中正確的結(jié)論有(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案