【題目】矗立在蓮花山的鄧小平雕像氣宇軒昂,這是中國第一座以城市雕塑形式豎立的鄧小平雕像。銅像由像體AD和底座CD兩部分組成。某校數(shù)學課外小組在地面的點B處測得點A的仰角∠ABC=67°,點D的仰角∠DBC=30°,已知CD=2米,求像體AD的高度。(最后結果精確到1米,參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.4,≈1.7)

【答案】6米

【解析】分析:在RtDBCBC=求得BC的長,在RtABC中由AC=BCtanABC求得AC的長,根據(jù)AD=AC-CD可得答案.

詳解∵在RtDBC中,∠DBC=30°,且CD=2米,

BC==,

∵在RtABC中,∠ABC=67°

AC=BCtanABC=2tan67°≈8.16,

AD=AC-2≈6,

答:像體AD的高度約為6米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,有下列結論:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正確的結論有( 。

A. 5個 B. 4個 C. 3個 D. 2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將平行四邊形ABCD折疊,使頂點D落在AB邊上的點E處,折痕為AF,下列說法中不正確的是(  )

A.EFBCB.EFAEC.BECFD.AFBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,點DBC上一動點,連接AD,將ACD沿AD折疊,點C落在點E處,連接DEAB于點F,當DEB是直角三角形時,DF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情景:如圖1,在等腰直角三角形ABC中∠ACB90°,BCa.將AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D作△BCDBC邊上的高DE

易證△ABC≌△BDE,從而得到△BCD的面積為

簡單應用:如圖2,在RtABC中,∠ACB90°,BCa,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,用含a的代數(shù)式表示△BCD的面積,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 已知,如圖,點D是△ABC的邊AB的中點,四邊形BCED是平行四邊形.

1)求證:四邊形ADCE是平行四邊形;

2)在△ABC中,若ACBC,則四邊形ADCE   ;(只寫結論,不需證明)

3)在(2)的條件下,當ACBC時,求證:四邊形ADCE是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E,C在線段BF上,BEECCF,ABDE,∠ACB=∠F

(1)求證:△ABC≌△DEF;

(2)求證:四邊形ACFD為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了對一棵傾斜的古杉樹AB進行保護,需測量其長度,如圖,在地面上選取一點C,測得∠ACB=45,AC=24 m,∠BAC=66.5,求這棵古杉樹AB的長度.(結果精確到0.1 m.參考數(shù)據(jù):sin66.5≈0.92,cos66.5≈0.40,tan66.5≈2.30)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當拱頂離水面2m時,水面寬4m,則水面下降1m時,水面寬度增加_____m.

查看答案和解析>>

同步練習冊答案