【題目】矗立在蓮花山的鄧小平雕像氣宇軒昂,這是中國第一座以城市雕塑形式豎立的鄧小平雕像。銅像由像體AD和底座CD兩部分組成。某校數(shù)學課外小組在地面的點B處測得點A的仰角∠ABC=67°,點D的仰角∠DBC=30°,已知CD=2米,求像體AD的高度。(最后結果精確到1米,參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.4,≈1.7)
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,有下列結論:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正確的結論有( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將平行四邊形ABCD折疊,使頂點D落在AB邊上的點E處,折痕為AF,下列說法中不正確的是( )
A.EF∥BCB.EF=AEC.BE=CFD.AF=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情景:如圖1,在等腰直角三角形ABC中∠ACB=90°,BC=a.將AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D作△BCD的BC邊上的高DE.
易證△ABC≌△BDE,從而得到△BCD的面積為.
簡單應用:如圖2,在Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,用含a的代數(shù)式表示△BCD的面積,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 已知,如圖,點D是△ABC的邊AB的中點,四邊形BCED是平行四邊形.
(1)求證:四邊形ADCE是平行四邊形;
(2)在△ABC中,若AC=BC,則四邊形ADCE是 ;(只寫結論,不需證明)
(3)在(2)的條件下,當AC⊥BC時,求證:四邊形ADCE是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E,C在線段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求證:△ABC≌△DEF;
(2)求證:四邊形ACFD為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了對一棵傾斜的古杉樹AB進行保護,需測量其長度,如圖,在地面上選取一點C,測得∠ACB=45,AC=24 m,∠BAC=66.5,求這棵古杉樹AB的長度.(結果精確到0.1 m.參考數(shù)據(jù):sin66.5≈0.92,cos66.5≈0.40,tan66.5≈2.30)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com