(2009•茂名)分析下列命題:
①四邊形的地磚能鑲嵌(密鋪)地面;
②不同時刻的太陽光照射同一物體,則其影長都是相等的;
③若在正方形紙片四個角剪去的小正方形邊長越大,則所制作的無蓋長方體形盒子的容積越大.
其中真命題的個數(shù)是( )
A.3
B.2
C.1
D.0
【答案】分析:根據(jù)四邊形內角和、相似以及長方體體積計算公式即可解答.
解答:解:①、四邊形的地磚能鑲嵌(密鋪)地面,因為任意四邊形的內角和是360°,放在同一頂點4個能密鋪,正確;
②、不同時刻的太陽光照射同一物體,則其影長不都是相等的,因為光線入射角度不同,錯誤;
③、若在正方形紙片四個角剪去的小正方形邊長越大,則所制作的無蓋長方體形盒子的容積越小,故錯誤.
①為真命題②③為假命題,故選C.
點評:本題需注意:任意四邊形的內角和是360°,放在同一頂點4個能密鋪;數(shù)學和實際生活是緊密相連的,要注意觀察生活中的數(shù)學.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

被譽為城區(qū)風景線的杭州東路跨湖段1857米,其各項綠化指標如表中所示,分析下表,回答下列問題:
主要樹種 株數(shù) 綠化覆蓋率
香樟 336 24%
柳樹 188 12%
棕櫚 258 3%
桂花樹 50 1%
合計 832 40%
(1)已知杭州東路全長4744米,在各樹行距(兩樹之間的水平距離)不變的情況下,請你用統(tǒng)計方法估計全線栽植的香樟、棕櫚各多少株?(結果保留整數(shù))
(2)杭州東路全線綠化工程是分期完成的,每千米的綠化投資成本一定.跨湖段是首期工程,且陽光、水份、土壤皆優(yōu)于其它路段,問是否可能用跨湖段的綠化覆蓋率40%表示全線的綠化覆蓋率?請用統(tǒng)計知識說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《投影與視圖》(04)(解析版) 題型:選擇題

(2009•茂名)分析下列命題:
①四邊形的地磚能鑲嵌(密鋪)地面;
②不同時刻的太陽光照射同一物體,則其影長都是相等的;
③若在正方形紙片四個角剪去的小正方形邊長越大,則所制作的無蓋長方體形盒子的容積越大.
其中真命題的個數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《四邊形》(03)(解析版) 題型:選擇題

(2009•茂名)分析下列命題:
①四邊形的地磚能鑲嵌(密鋪)地面;
②不同時刻的太陽光照射同一物體,則其影長都是相等的;
③若在正方形紙片四個角剪去的小正方形邊長越大,則所制作的無蓋長方體形盒子的容積越大.
其中真命題的個數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省茂名市中考數(shù)學試卷(解析版) 題型:選擇題

(2009•茂名)分析下列命題:
①四邊形的地磚能鑲嵌(密鋪)地面;
②不同時刻的太陽光照射同一物體,則其影長都是相等的;
③若在正方形紙片四個角剪去的小正方形邊長越大,則所制作的無蓋長方體形盒子的容積越大.
其中真命題的個數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習冊答案