【題目】如圖1,在ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.

(1)求證:BE=CE;

(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BFAC,垂足為F,BAC=45°,原題設(shè)其它條件不變.求證:AEF≌△BCF.

【答案】(1)根據(jù)等腰三角形三線合一的性質(zhì)可得BAE=EAC,然后利用“邊角邊”證明ABE和ACE全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可。

(2)先判定ABF為等腰直角三角形,再根據(jù)等腰直角三角形的兩直角邊相等可得AF=BF,再根據(jù)同角的余角相等求出EAF=CBF,然后利用“角邊角”證明AEF和BCF全等即可。

【解析】

(1)根據(jù)等腰三角形三線合一的性質(zhì)可得BAE=EAC,然后利用“邊角邊”證明ABE和ACE全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可。

(2)先判定ABF為等腰直角三角形,再根據(jù)等腰直角三角形的兩直角邊相等可得AF=BF,再根據(jù)同角的余角相等求出EAF=CBF,然后利用“角邊角”證明AEF和BCF全等即可。

證明:(1)AB=AC,D是BC的中點(diǎn),∴∠BAE=EAC。

ABE和ACE中,,

∴△ABE≌△ACE(SAS)。BE=CE。

(2)∵∠BAC=45°,BFAF,∴△ABF為等腰直角三角形。AF=BF。

AB=AC,點(diǎn)D是BC的中點(diǎn),ADBC。∴∠EAF+C=90°。

BFAC,∴∠CBF+C=90°。∴∠EAF=CBF。

AEF和BCF中,,

∴△AEF≌△BCF(ASA)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全市九年級(jí)學(xué)生某次數(shù)學(xué)模擬考試情況,現(xiàn)從全市30000名九年級(jí)考生中隨機(jī)抽取部分學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:

分?jǐn)?shù)段

頻數(shù)

頻率

 x<60

 20

 0.10

 60≤x<70

 28

 0.14

  70≤x<80

 54

 0.27

 80≤x<90

 a

 0.20

  90≤x<100

 24

 0.12

  100≤x<110

 18

 b

  110≤x<120

 16

 0.08

請(qǐng)根據(jù)以上圖表提供的信息,解答下列問題:

(1)表格中的a=   ,b=   ;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)如果把成績(jī)?cè)?0分以上(含90分)定為優(yōu)秀,那么該市30000名九年級(jí)學(xué)生中本次數(shù)學(xué)模擬考試成績(jī)?yōu)閮?yōu)秀的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)菱形被一條直線分成面積為x,y的兩部分,則y與x之間的函數(shù)圖象只可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,線段cm,點(diǎn)C從點(diǎn)P出發(fā)以1cm/s的速度沿AB向左運(yùn)動(dòng),點(diǎn)D從點(diǎn)B出發(fā)以2cm/s的速度沿AB向左運(yùn)動(dòng)(點(diǎn)C在線段AP上,D在線段BP上)

(1)若CD 運(yùn)動(dòng)到任意時(shí)刻都有PD=2AC,試說明PB=2AP

(2)在(1)的條件下,Q是直線AB上一點(diǎn),若AQ-BQ=PQ,求PQ的值;

(3)在(1)的條件下,若CD運(yùn)動(dòng)了一段時(shí)間后恰有AB=2CD,這時(shí)點(diǎn)C停止運(yùn)動(dòng),點(diǎn)D繼續(xù)在線段PB上運(yùn)動(dòng),M,N 分別是CD,PD的中點(diǎn),求MN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦晚會(huì)上,王老師要為她的學(xué)生及班級(jí)的六位科任老師送上賀年卡,網(wǎng)上購(gòu)買賀年卡的優(yōu)惠條件是:購(gòu)買5050張以上享受團(tuán)購(gòu)價(jià).王老師發(fā)現(xiàn):零售價(jià)與團(tuán)購(gòu)價(jià)的比是5:4,王老師計(jì)算了一下,按計(jì)劃購(gòu)買賀年卡只能享受零售價(jià),如果比原計(jì)劃多購(gòu)買6張賀年卡就能享受團(tuán)購(gòu)價(jià),這樣她正好花了100元,而且比原計(jì)劃還節(jié)約10元錢;

(1)賀年卡的零售價(jià)是多少?

(2)班里有多少學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(m,n),且滿足m-2+(n-2)2=0,AABy,垂足為B.

(1)A點(diǎn)坐標(biāo);

(2)如圖1,分別以AB,AO為邊作等邊ABCAOD,試判定線段ACDC的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

(3)如圖2,AAEx,垂足為E,點(diǎn)FG分別為線段OE、AE上的兩個(gè)動(dòng)點(diǎn) (不與端點(diǎn)重合),滿足∠FBG=45°,設(shè)OF=a,AG=b,FG=c,試探究的值是 否為定值?如果是,直接寫出此定值:如果不是,請(qǐng)舉例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,BECD,BE=DE,BC=DA.

求證:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:
【1】新知學(xué)習(xí)
⑴梯形的中位線:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線.
⑵梯形的中位線性質(zhì):梯形的中位線平行于兩底,并且等于兩底和的一半.
⑶形如分式 (m為常數(shù),且m>0),若x>0,則 ,并且有下列結(jié)論:
當(dāng)x 逐漸增大時(shí),分母x+2m逐漸增大,分式 的值逐漸減少并趨于0,但仍大于0.當(dāng)x 逐漸減少時(shí),分母x+2m逐漸減少,分式 的值逐漸增大并趨于 ,即趨于 ,但仍小于
【2】問題解決
如圖2,已知在梯形ABCD中,AD∥BC,AD<BC,E、F分別是AB、CD的中點(diǎn).

(1)設(shè)AD=7,BC=17,求 的值.
(2)設(shè)AD=a(a為正的常數(shù)),BC=x,請(qǐng)問:當(dāng)BC的長(zhǎng)不斷增大時(shí), 的值能否大于或等于3,試證明你的結(jié)論.
(3)進(jìn)一步猜想:任何一個(gè)梯形的中位線所分成的兩部分圖形的面積的比值所在的范圍是什么,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AOB是平角,OMON分別是AOC、BOD 的平分線

1AOC=40°,BOD=60°,MON的度數(shù);

2COD=90°求出MON的度數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案