【題目】如圖,在ABCD中,BE⊥AC,垂足E在CA的延長線上,DF⊥AC,垂足F在AC的延長線上,求證:AE=CF.
【答案】證明:∵四邊形ABCD是平行四邊形, ∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∴180°﹣∠BAC=180°﹣∠DCA,
∴∠EAB=∠FAD,
∵BE⊥AC,DF⊥AC,
∴∠BEA=∠DFC=90°,
在△BEA和△DFC中, ,
∴△BEA≌△DFC(AAS),
∴AE=CF
【解析】由平行四邊形的性質(zhì)得出AB∥CD,AB=CD,由平行線的性質(zhì)得出得出∠BAC=∠DCA,證出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS證明△BEA≌△DFC,即可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與 軸交 、 兩點,直線 與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求拋物線及直線AC的函數(shù)表達式;
(2)若P點是線段AC上的一個動點,過P點作 軸的平行線交拋物線于F點,求線段PF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2015攀枝花)某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元.
(1)若該超市一次性購進兩種商品共80件,且恰好用去1600元,問購進甲、乙兩種商品各多少件?
(2)若該超市要使兩種商品共80件的購進費用不超過1640元,且總利潤(利潤=售價﹣進價)不少于600元.請你幫助該超市設(shè)計相應的進貨方案,并指出使該超市利潤最大的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻印⒈憬荩承?shù)學興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制如圖所示的兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中所給出的信息解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)若某商場天內(nèi)有人次支付記錄,估計選擇微信支付的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,且AD=12cm.點P從點A出發(fā),以3cm/s的速度在射線AD上運動;同時,點Q從點C出發(fā),以1cm/s的速度在射線CB上運動.運動時間為t,當t=______秒(s)時,點P、Q、C、D構(gòu)成平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學重要的著作之一,奠定了中國傳統(tǒng)數(shù)學的基本框架.其中第九卷《勾股》主要講述了以測量問題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”
譯文:“今有正方形水池邊長為1丈,有棵蘆葦生長在它長出水面的部分為1尺.將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接.問水深,蘆葦?shù)拈L度分別是多少尺?”(備注:1丈=10尺)
如果設(shè)水深為尺,那么蘆葦長用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了分析九年級學生藝術(shù)考試的成績,隨機抽查了兩個班級的各5名學生的成績,它們分別是:
九(1)班:96,92,94,97,96
九(2)班:90,98,97,98,92
通過數(shù)據(jù)分析,列表如下:
(1)
(2)計算兩個班級所抽取的學生藝術(shù)成績的方差,判斷哪個班學生藝術(shù)成績比較穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知在平面直角坐標系中,△ABC的位置如圖所示:
(1)請寫出點A、B、C三點的坐標.
(2)將△ABC向右平移6個單位,再向上平移2個單位,請在圖中作出平移后的△A'B'C',并寫出它們的坐標:A'( ),B'( ),C'( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com