20.定義新運算:對于任意有理數(shù)a、b,都有a⊕b=a(a-b)+1,等式的右邊是通常的有理數(shù)運算,例如2⊕5=2(2-5)+1=2×(-3)+1.
(1)求(-2)⊕3.
(2)若3⊕x=-5,求x的值.

分析 (1)根據(jù)新運算得出原式=-2×(-2-3)+1,求出即可;
(2)根據(jù)新運算得出3(3-x)+1=-5,求出方程的解即可.

解答 解:(1)(-2)⊕3=-2×(-2-3)+1=10+1=11;

(2)3⊕x=3(3-x)+1=-5,
9-3x+1=-5,
-3x=-15,
x=5.

點評 本題考查了求代數(shù)式的值和有理數(shù)的混合運算,能讀懂題意是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

10.小聰和小敏在研究絕對值的問題時,遇到了這樣一道題:
當式子|x-1|+|x+5|取最小值時,x應滿足的條件是-5≤x≤1,此時的最小值是6.
小聰說:利用數(shù)軸求線段的長可以解決這個問題.如圖,點A,B對應的數(shù)分別為-5,1,則線段AB的長為6,我發(fā)現(xiàn)也可通過|1-(-5)|或|-5-1|來求線段AB的長,即數(shù)軸上兩點間的線段的長等于它們所對應的兩數(shù)差的絕對值.

小敏說:我明白了,若點C在數(shù)軸上對應的數(shù)為x,線段AC的長就可表示為|x-(-5)|,那么|x-1|表示的是線段BC的長.
小聰說:對,求式子|x-1|+|x+5|的最小值就轉(zhuǎn)化為數(shù)軸上求線段AC+BC長的最小值,而點C在線段AB上時AC+BC=AB最小,最小值為6.
小敏說:點C在線段AB上,即x取-5,1之間的有理數(shù)(包括-5,1),因此相應x的取值范圍可表示為-5≤x≤1時,最小值為6.
請你根據(jù)他們的方法解決下面的問題:
(1)小敏說的|x-1|表示的是線段BC的長;
(2)當式子|x-3|+|x+2|取最小值時,x應滿足的條件是-2≤x≤3;
(3)當式子|x-2|+|x+3|+|x+4|取最小值時,x應滿足的條件是x=-3;
(4)當式子|x-a|+|x-b|+|x-c|+|x-d|(a<b<c<d)取最小值時,x應滿足的條件是b≤x≤c,此時的最小值是c-b+d-a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

11.在平面直角坐標系中,有A(2,-1)、B(-1,-2)、C(2,1)、D(-2,1)四點.其中,關于原點對稱的兩點為( 。
A.點A和點BB.點B和點CC.點C和點DD.點D和點A

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.如圖甲,A、B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發(fā),在⊙O上以每秒一個單位的速度勻速運動,回到點A運動結(jié)束.設運動時間為x,弦BP的長度為y,那么如圖乙圖象中可能表示y與x的函數(shù)關系的是( 。
A.B.C.①或③D.②或④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.代數(shù)式2x+3中,當x取a-3時,問2x+3是不是a的函數(shù)?若不是,請說明理由;若是,也請說明理由,并請以a的取值為橫坐標,對應的2x+3值為縱坐標,畫出其圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

5.單項式-$\frac{{x}^{2}{z}^{3}}{2}$是5次單項式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

12.使二次根式$\sqrt{x-7}$有意義的x的取值范圍是( 。
A.1<x<7B.0<x≤7C.x≤7D.x≥7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.如圖,△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB.
(1)思考EF與CD有怎樣的位置關系,說明理由;
(2)若∠A=65°,求∠FEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

5.下列說法中,正確的是( 。
A.不可能事件發(fā)生的概率為0
B.隨機事件發(fā)生的概率為0
C.概率很小的事件不可能發(fā)生
D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次

查看答案和解析>>

同步練習冊答案