【題目】如圖,兩建筑物的水平距離BC為18m,從A點(diǎn)測(cè)得D點(diǎn)的俯角α為30°,測(cè)得C點(diǎn)的俯角β為60°.則建筑物CD的高度為m(結(jié)果不作近似計(jì)算).

【答案】12
【解析】解:過點(diǎn)D作DE⊥AB于點(diǎn)E,

則四邊形BCDE是矩形,
根據(jù)題意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,
∴DE=BC=18m,CD=BE,
在Rt△ABC中,AB=BCtan∠ACB=18×tan60°=18 (m),
在Rt△ADE中,AE=DEtan∠ADE=18×tan30°=6 (m),
∴DC=BE=AB﹣AE=18 ﹣6 =12 (m).
所以答案是:12
【考點(diǎn)精析】掌握關(guān)于仰角俯角問題是解答本題的根本,需要知道仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當(dāng)OMC的面積是OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,過點(diǎn)CCDCB交∠CBA的外角平分線于點(diǎn)D,連接AD,過點(diǎn)C作∠BCE=BAD,交AB的延長線于點(diǎn)E.若CD=3,則CE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將含30°角的三角板ABC如圖放置,使其三個(gè)頂點(diǎn)分別落在三條平行直線上,其中∠ACB=90°,當(dāng)∠1=60°時(shí),圖中等于30°的角的個(gè)數(shù)是(

A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)、移動(dòng)終端的迅速發(fā)展,數(shù)字化閱讀越來越普及,公交上的“低頭族”越來越多.某研究機(jī)構(gòu)針對(duì)“您如何看待數(shù)字化閱讀”問題進(jìn)行了隨機(jī)問卷調(diào)查(如圖1),并將調(diào)查結(jié)果繪制成圖2和圖3所示的統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖中提供的信息,解答下列問題:
(1)求出本次接受調(diào)查的總?cè)藬?shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)表示觀點(diǎn)B的扇形的圓心角度數(shù)為度;
(3)2016年底慈溪人口總數(shù)約為200萬(含外來務(wù)工人員),請(qǐng)根據(jù)圖中信息,估計(jì)慈溪市民認(rèn)同觀點(diǎn)D的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為a的正方形,點(diǎn)G、E分別是邊AB、BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平方線CF于點(diǎn)F.
(1)證明:△AGE≌△ECF;
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)DAB上,AD=AC,AF⊥CDCD于點(diǎn)E,交CB于點(diǎn)F,則CF的長是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,直線l與x、y軸分別交于點(diǎn)A(4,0)、B(0, )兩點(diǎn),∠BAO的角平分線交y軸于點(diǎn)D.點(diǎn)C為直線l上一點(diǎn),以AC為直徑的⊙G經(jīng)過點(diǎn)D,且與x軸交于另一點(diǎn)E.
(1)求證:y軸是⊙G的切線;
(2)請(qǐng)求⊙G的半徑r,并直接寫出點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)F為⊙G上的一點(diǎn),連接AF,且滿足∠FEA=45°,請(qǐng)求出EF的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為等腰梯形,AD∥BC,連結(jié)AC、BD.在平面內(nèi)將△DBC沿BC翻折得到△EBC.
(1)四邊形ABEC一定是什么四邊形?
(2)證明你在(1)中所得出的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案