【題目】嘉興教育學院大學生小王利用暑假開展了30天的社會實踐活動,參與了嘉興浙北超市的經營,了解到某成本為15元/件的商品在x天銷售的相關信息,如表表示:
銷售量p(件) | P=45﹣x |
銷售單價q(元/件) | 當1≤x≤18時,q=20+x |
設該超市在第x天銷售這種商品獲得的利潤為y元.
(1)求y關于x的函數(shù)關系式;
(2)在這30天中,該超市銷售這種商品第幾天的利潤最大?最大利潤是多少?
【答案】
(1)
解:①當1≤x≤18時,y=(20+x﹣15)(45﹣x)=(5+x)(45﹣x)=﹣x2+40x+225;
②當18<x≤30時,y=(38﹣15)(45﹣x)=23(45﹣x)=﹣23x+1035.
則
(2)
①當1≤x≤18時,y=﹣(x﹣20)2+625,
∴當x=18時,y最大值=621元.
②當18<x≤30時,
∵﹣30<0,
∴y隨x的增大而減小,
又∵x取正整數(shù),
∴當x=19時,y最大值=598(元).
∵621>598,
∴在這30天中,該超市銷售這種商品,第18天的利潤最大,且最大利潤為621元.
【解析】(1)總利潤=單件利潤×銷售量;分類討論當1≤x≤18時,當18<x≤30時;
(2)根據(jù)二次函數(shù)和一次函數(shù)的增減性質求所有范圍內的最大值,再對比.
科目:初中數(shù)學 來源: 題型:
【題目】一個圓錐的側面積是底面積的3倍,則這個圓錐側面展開圖的圓心角度數(shù)為( )
A.120°
B.180°
C.240°
D.300°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結論是( )
A.①③
B.②③
C.②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.
(1)求證:BC是∠ABE的平分線;
(2)若DC=8,⊙O的半徑OA=6,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A( ,0)是 軸上一點,以OA為對角線作菱形OBAC,使得 60°,現(xiàn)將拋物線 沿直線OC平移到 ,則當拋物線與菱形的AB邊有公共點時,則m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中, ∠ABC=120°, E,F分別為AD,CD上的動點,且AE+CF=2,則線段EF長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC.點E是y軸上任意一點記點E為(0,n).
(1)求點D的坐標及直線BC的解析式;
(2)連結DE,將線段DE繞點D按順時針旋轉90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說明理由.
(3)作點E關于AC的對稱點E’,當n為何值時,A E’分別于AC,BC,AB垂直?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=(x2﹣ax+a+1)ex(a∈N)在區(qū)間(1,3)只有1個極值點,則曲線f(x)在點(0,f(0))處切線的方程為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>0)的焦點在x軸上,且橢圓C的焦距為2. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點R(4,0)的直線l與橢圓C交于兩點P,Q,過P作PN⊥x軸且與橢圓C交于另一點N,F(xiàn)為橢圓C的右焦點,求證:三點N,F(xiàn),Q在同一條直線上.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com