如圖所示,在梯形ABCD中,AD∥BC,點(diǎn)E、F分別為AB、CD的中點(diǎn).連接AF并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ADF≌△GCF;
(2)若EF=7.5,BC=10,求AD的長(zhǎng).

【答案】分析:根據(jù)梯形的性質(zhì),利用AAS可判定△ADF≌△GCF;根據(jù)中位線定理,可得到BC+AD=15,已知BC的長(zhǎng),那么AD的長(zhǎng)自然就出來了.
解答:(1)證明:∵AD∥BC,(AD∥BG)
∴∠D=∠FCG,∠DAF=∠G.(2分)
∵DF=CF,
∴△ADF≌△GCF.(4分)

(2)解法一:由(1)得△ADF≌△GCF,
∴AF=FG,AD=CG.(5分)
∵AE=BE,
∴EF為△ABG的中位線.
∴EF=BG.(6分)
∴BG=2×7.5=15.(7分)
∴AD=CG=BG-BC=15-10=5.(8分)

解法二:∵點(diǎn)E、F分別是AB、CD的中點(diǎn),
∴EF是梯形ABCD的中位線.(5分)
∴EF=(AD+BC),(6分)
即7.5=(AD+10).(7分)
∴AD=5.(8分)
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)梯形的性質(zhì),全等三角形的判定及中位線定理的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點(diǎn),連接EF,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8.動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿C?D?A?B的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止.在點(diǎn)P的運(yùn)動(dòng)過程中,使△PMC為等腰三角形的點(diǎn)P有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8.動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿C→D→A→B的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止.在點(diǎn)P的運(yùn)動(dòng)過程中,使△PMC為等腰三角形的點(diǎn)P有幾個(gè)?并求出相應(yīng)等腰三角形的腰長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.則腰長(zhǎng)是
 
.若P是梯形的對(duì)稱軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在梯形ABCD中,AB∥DC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說法錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案