【題目】如圖,已知AC⊥AB,DB⊥AB,AC=BE,CE=DE,
(1)證明:△ACE≌△BED;
(2)試猜想線(xiàn)段CE與DE位置關(guān)系,并證明你的結(jié)論.
【答案】(1)證明見(jiàn)解析;(2)CE⊥DE.
【解析】試題分析:(1)由AC⊥AB于點(diǎn)A,BD⊥AB于點(diǎn)B,得到∠A=∠B=90°,推出Rt△ACE≌Rt△BED;
(2)CE與DE位置關(guān)系是垂直,根據(jù)全等三角形的性質(zhì)得到∠AEC=∠D,由∠D+∠BED=90°,等量代換得到∠AEC+∠BED=90°,即可得到結(jié)論.
試題解析:
證明:
(1)∵CA⊥AB,DB⊥AB
∴∠A=∠B=90°
(2)CE⊥DE
∵
∴∠C=∠2
又∵∠C+∠1=90°
∴∠2+∠1=90°
∴∠CED=90°
∴CE⊥DE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(﹣2,n),B(1,﹣3)兩點(diǎn).
(1)試確定上述一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題發(fā)現(xiàn):
()如圖①,點(diǎn)和點(diǎn)均在⊙上,且,點(diǎn)和點(diǎn)均在射線(xiàn)上,若,則點(diǎn)與⊙的位置關(guān)系是__________;若,則點(diǎn)與⊙的位置關(guān)系是__________.
問(wèn)題解決:
如圖②,圖③所示,四邊形中, , , ,且, ,點(diǎn)是邊上任意一點(diǎn).
()當(dāng)時(shí),求的長(zhǎng)度.
()是否存在點(diǎn),使得最大?若存在,請(qǐng)說(shuō)明理由,并求出的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線(xiàn)段能組成三角形的是( )
A. 1cm,2cm,3cm B. 2cm,3cm,5.5cm C. 5cm,8cm,12cm D. 4cm,5cm,9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列說(shuō)法:①c=0;②該拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=﹣1;③當(dāng)x=1時(shí),y=3a;④am2+bm+a>0(m≠﹣1),其中正確的個(gè)數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩名同學(xué)進(jìn)行了10次三級(jí)蛙跳測(cè)試,經(jīng)計(jì)算,他們的平均成績(jī)相同,若要比較這兩名同學(xué)的成績(jī)哪一位更穩(wěn)定,通常還需要比較他們成績(jī)的( 。
A.眾數(shù)
B.中位數(shù)
C.方差
D.以上都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com