【題目】解方程:

1)(x+2225

2x22x20

3x26x160

4)(x22﹣(3x+820

【答案】1x3x=﹣7;(2x1+x1;(3x=﹣2x8;(4x=﹣x=﹣5

【解析】

1)運用直接開平方法解答即可;(2)運用配方法解答即可;(3) (4)運用分解因式法即可.

解:(1)(x+2225

x+25x+2=﹣5,

解得:x3x=﹣7;

2x22x20,

x22x2,

x22x+12+1,即(x123,

x1x1=﹣,

解得:x1+x1;

3x26x160

x+2)(x8)=0,

x+20x80,

解得:x=﹣2x8

4)(x22﹣(3x+820

因式分解可得:(x2+3x+8)(x23x8)=0,

即(4x+6)(﹣2x10)=0

4x+60或﹣2x100,

解得:x=﹣x=﹣5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加英語口語聽力大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:

甲:79,81,8285,83 乙:88,7990,8172

1)求甲、乙兩名同學(xué)測試成績的方差;

2)請你選擇一個角度來判斷選拔誰參加比賽更合適.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:P為圖形M上任意一點,Q為圖形N上任意一點,如果P,Q兩點間的距離有最小值,那么稱這個最小值為圖形MN間的“距離”,記作特別地,若圖形M,N有公共點,規(guī)定

如圖1的半徑為2,

,,則____________

已知直線l的“距離”,求b的值.

已知點,的圓心為,半徑為,請直接寫出m的取值范圍______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC.1)請用圓規(guī)和直尺作出⊙P,使圓心PAB邊和BC邊的距離相等,且⊙P經(jīng)過A,B兩點(保留作圖痕跡,不寫作法和證明);

2)若∠B=60°,AB=6,求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19 m),另外三邊利用學(xué),F(xiàn)有總長38 m的鐵欄圍成.

(1)若圍成的面積為180 m2,試求出自行車車棚的長和寬;

(2)能圍成面積為200 m2的自行車車棚嗎?如果能,請你給出設(shè)計方,如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,點PABC內(nèi)一點,∠APB=∠BAC120°.若APBP4,則PC的最小值為(

A. 2B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中拋物線x軸于點A、B,交y軸于點C, A、B兩點橫坐標(biāo)為-13,C點縱坐標(biāo)為-4.

1)求拋物線的解析式;

2)動點D在第四象限且在拋物線上,當(dāng)△BCD面積最大時,求D點坐標(biāo),并求△BCD面積的最大值;

3)拋物線的對稱軸上是否存在一點Q,使得∠QBC=45°,如果存在,求出點Q的坐標(biāo),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F.

(1)試說明DF是⊙O的切線;

(2)AC=3AE=6,求tanC

查看答案和解析>>

同步練習(xí)冊答案