【題目】如圖,在四邊形ABDE中,CBD的中點,BD8AB2,DE8.若∠ACE150°,則線段AE長度的最大值為_____

【答案】10+4

【解析】

B關(guān)于AC的對稱點F,D關(guān)于EC的對稱點G,連接AF,FC,CG,EG,FG.作CHFGH,求出AF,FG,EG,根據(jù)兩點之間線段最短解決問題即可.

解:作B關(guān)于AC的對稱點F,D關(guān)于EC的對稱點G,連接AF,FCCG,EG,FG.作CHFGH

CBD邊的中點,

CBCDBD4

∵△ACB≌△ACFSAS),

CFCB,∴∠BCA=∠FCA

同理可證:CDCG,∴∠DCE=∠GCE

CBCD,∴CGCF

∵∠ACE150°,

∴∠BCA+DCE180°150°30°

∴∠FCA+GCE30°

∴∠FCG120°CFCG4

CHFG,

FHHGCFsin60°2,

FG4

AB2DE8,

AFAB2,EGED8

AEAF+FG+EG10+4

∴當A、FG、E共線時AE的值最大,最大值為10+4

故答案為:10+4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,ACBDCE均為等腰直角三角形,ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為 .

(2)拓展探究

如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.

(3)解決問題

如圖3,線段PA=3,B是線段PA外一點,PB=5,連接AB,AB繞點A逆時針旋轉(zhuǎn)90°得到線段AC,隨著點B的位置的變化,直接寫出PC的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍球、2個紅球.

(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);

(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,點、上,,過點作,垂足為

的長;

的延長線交于點,求弦和弧圍成的圖形(陰影部分)的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于AB(6,n)兩點.

(1)求kn的值;

(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當2≤x≤6時,函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yax22x3ax軸交于A、B兩點,與y軸交于C點,OCOB,點P為拋物線上一動點

1)求拋物線的解析式;

2)當點P運動到拋物線對稱軸右側(cè)時如圖2,連PC、BCBPBCP.設BCP的面積為s,點P的橫坐標為x.若s,求x的取值范圍;

3)當點P運動到第四象限時,連APBP,BPy軸于點R,過B作直線lAPy軸于點Q,問:QR、OC之間是否存在確定的數(shù)量關(guān)系?若存在,請求出并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150/千克,售價為400元千克.因市場變化,準備低價一次性處理掉部分存貨,所得貨款全部用來生產(chǎn)產(chǎn)品,產(chǎn)品售價為200/千克.經(jīng)市場調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).

(千克)

(元/千克)

200

350

400

300

1)請求出處理價格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;

2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時,生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?

3)由于改進技術(shù),產(chǎn)品的生產(chǎn)成本降低到了/千克,設全部產(chǎn)品全部售出,所得總利潤為(元),若時,滿足的增大而減小,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖直角三角板∠ABO30°,直角項點O位于坐標原點,斜邊AB垂直于x軸,頂點A在函數(shù)的y1圖象上,頂點B在函數(shù)y2的圖象上,則=( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校在倡導學生大課間活動中,隨機抽取了部分學生對我最喜愛課間活動進行了一次抽樣調(diào)查,分別從打籃球、踢足球、自由活動、跳繩、其它等5個方面進行問卷調(diào)(每人只能選一項),根據(jù)調(diào)查結(jié)果繪制了如圖的不完整統(tǒng)計圖,請你根據(jù)圖中信息,解答下列問題.

1)本次調(diào)查共抽取了學生 人;

2)求本次調(diào)查中喜歡踢足球人數(shù);

3)若甲、乙兩位同學通過抽簽的方式確定自己填報的課間活動,則兩位同學抽到同一運動的概率是多少?

查看答案和解析>>

同步練習冊答案