【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點,以CD為直徑的⊙O交BC于點E,連接AE交CD于點P,交⊙O于點F,連接DF,∠CAE=∠ADF.
(1)判斷AB與⊙O的位置關(guān)系,并說明理由;
(2)若PF:PC=1:2,AF=5,求CP的長.

【答案】
(1)解:AB是⊙O切線.

理由:連接DE、CF.

∵CD是直徑,

∴∠DEC=∠DFC=90°,

∵∠ACB=90°,

∴∠DEC+∠ACE=180°,

∴DE∥AC,

∴∠DEA=∠EAC=∠DCF,

∵∠DFC=90°,

∴∠FCD+∠CDF=90°,

∵∠ADF=∠EAC=∠DCF,

∴∠ADF+∠CDF=90°,

∴∠ADC=90°,

∴CD⊥AD,

∴AB是⊙O切線


(2)解:∵∠CPF=∠CPA,∠PCF=∠PAC,

∴△PCF∽△PAC,

,

∴PC2=PFPA,設(shè)PF=a.則PC=2a,

∴4a2=a(a+5),

∴a= ,

∴PC=2a=


【解析】(1)結(jié)論:AB是⊙O切線,連接DE,CF,由∠FCD+∠CDF=90°,只要證明∠ADF=∠DCF即可解決問題.(2)只要證明△PCF∽△PAC,得 ,設(shè)PF=a.則PC=2a,列出方程即可解決問題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】求不等式組 的解集,并寫出它的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,點G、E、F分別在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解全校學生上學期參加社區(qū)活動的情況,學校隨機調(diào)查了本校50名學生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下: 參加社區(qū)活動次數(shù)的頻數(shù)、頻率分布表

活動次數(shù)x

頻數(shù)

頻率

0<x≤3

10

0.20

3<x≤6

a

0.24

6<x≤9

16

0.32

9<x≤12

6

0.12

12<x≤15

m

b

15<x≤18

2

n

根據(jù)以上圖表信息,解答下列問題:

(1)表中a= , b=;
(2)請把頻數(shù)分布直方圖補充完整(畫圖后請標注相應的數(shù)據(jù));
(3)若該校共有1200名學生,請估計該校在上學期參加社區(qū)活動超過6次的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=x2﹣2x﹣3的圖象如圖所示,若線段AB在x軸上,且AB為2 個單位長度,以AB為邊作等邊△ABC,使點C落在該函數(shù)y軸右側(cè)的圖象上,則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的扇形紙片半徑為5cm,用它圍成一個圓錐的側(cè)面,該圓錐的高是4cm,則該圓錐的底面周長是(
A.3πcm
B.4πcm
C.5πcm
D.6πcm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過(﹣1,m2+2m+1)、(0,m2+2m+2)兩點,其中m為常數(shù).
(1)求b的值,并用含m的代數(shù)式表示c;
(2)若拋物線y=x2+bx+c與x軸有公共點,求m的值;
(3)設(shè)(a,y1)、(a+2,y2)是拋物線y=x2+bx+c上的兩點,請比較y2﹣y1與0的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從甲地勻速駛往乙地,到達后用了半小時卸貨,隨即勻速返回,已知貨車返回的速度是它從甲地駛往乙地的速度的1.5倍.貨車離甲地的距離y(千米)關(guān)于時間x(小時)的函數(shù)圖象如圖所示.則a=(小時).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將透明三角形紙片PAB的直角頂點P落在第四象限,頂點A、B分別落在反比例函數(shù)y= 圖象的兩支上,且PB⊥x于點C,PA⊥y于點D,AB分別與x軸,y軸相交于點E、F.已知B(1,3).

(1)k=;
(2)試說明AE=BF;
(3)當四邊形ABCD的面積為 時,求點P的坐標.

查看答案和解析>>

同步練習冊答案