如圖1,在平面直角坐標(biāo)系中,A(,0),B(0,),且、滿足.

(1)求直線AB的解析式;

(2)若點M為直線在第一象限上一點,且△ABM是等腰直角三角形,求的值.

(3)如圖3過點A的直線軸負(fù)半軸于點P,N點的橫坐標(biāo)為-1,過N點的直線交AP于點M,給出兩個結(jié)論:①的值是不變;②的值是不變,只有一個結(jié)論是正確,請你判斷出正確的結(jié)論,并加以證明和求出其值。

 

 

 

【答案】

   解:(1)由題意求得  A(2,0)  B(0,4)    

利用待定系數(shù)法求得函數(shù)解析式為:   

 (2)分三種情況

當(dāng)BM⊥BA  且BM=BA時        當(dāng)AM⊥BA  且AM=BA時        當(dāng)AM⊥BM  且AM=BM時

△  BMN≌△ABO(AAS)           △BOA≌△ANM(AAS)

得M的坐標(biāo)為(4,6 )         得M的坐標(biāo)為(6, 4 )        構(gòu)建正方形

m=                           m=                       m=1

(3)結(jié)論2是正確的且定值為2  

  設(shè)NM與x軸的交點為H,分別過M、H作x軸的垂線垂足為G,HD交MP于D點,

   

與x軸交于H點可得H(1,0)    

交于M點可求M(3,K)

而A(2,0) 所以A為HG的中點

所以△AMG≌△ADH(ASA)             

又因為N點的橫坐標(biāo)為-1,且在

所以可得N 的縱坐標(biāo)為-K,同理P的縱坐標(biāo)為-2K

所以ND平行于x軸且N、D的很坐標(biāo)分別為-1、1

所以N與D關(guān)于y軸對稱

所以可證△AMG≌△ADH≌△DPC≌△NPC

所以PN=PD=AD=AM

所以= 2             

【解析】(1)求出a、b的值得到A、B的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,代入得到方程組,求出即可;

(2)當(dāng)BM⊥BA,且BM=BA時,過M作MN⊥Y軸于N,證△BMN≌△ABO(AAS),求出M的坐標(biāo)即可;②當(dāng)AM⊥BA,且AM=BA時,過M作MN⊥X軸于N,同法求出M的坐標(biāo);③當(dāng)AM⊥BM,且AM=BM時,過M作MN⊥X軸于N,MH⊥Y軸于H,證△BHM≌△AMN,求出M的坐標(biāo)即可.

(3)設(shè)NM與x軸的交點為H,分別過M、H作x軸的垂線垂足為G,HD交MP于D點,求出H、G的坐標(biāo),證△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點的坐標(biāo),如圖甲,點M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標(biāo)為(-3,0).
(1)點A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當(dāng)點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標(biāo)為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點的坐標(biāo),如圖甲,點M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊答案