【題目】如圖,要設計一個等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)當三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
(3)根據設計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關系,比例系數是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當甬道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?
【答案】
(1)解:橫向甬道的面積為: x=150x(m2)
(2)解:橫向甬道的面積為: x=150x(m2);
甬道總面積為150x+160x﹣2x2=310x﹣2x2,
依題意:310x﹣2x2= × ×80,
整理得:x2﹣155x+750=0,
x1=5,x2=150(不符合題意,舍去),
∴甬道的寬為5米;
(3)解:∵花壇上底120米,下底180米,上下底相距80米,
∴等腰梯形的面積為: (120+180)×80=12000,
∵甬道總面積為S=310x﹣2x2,
綠化總面積為12000﹣S,
花壇總費用y=甬道總費用+綠化總費用:
∴y=5.7x+(12000﹣S)×0.02,
=5.7x﹣0.02S+240,
=5.7x﹣0.02(310x﹣2x2)+240,
=0.04x2﹣0.5x+240,
當x=﹣ =6.25時,y的值最小.
∵根據設計的要求,甬道的寬不能超過6米,
∴當x=6米時,總費用最少.
即最少費用為:0.04×62﹣3+240=238.44萬元.
【解析】(1)先求出橫向甬道的長即梯形的中位線長,即可求出其面積。
(2)根據題意先求出甬道總面積,再根據甬道總面積=梯形面積。建立方程求解即可。
(3)分別求出等腰梯形的面積、甬道總面積、綠化總面積,再根據花壇總費用y=甬道總費用+綠化總費用,建立函數關系式,再求出頂點坐標,根據設計要求甬道的寬不能超過6米,求出當x=6時的函數值即可。
【考點精析】認真審題,首先需要了解二次函數的最值(如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a),還要掌握梯形的中位線(梯形的中位線平行于梯形的兩底并等于兩底和的一半)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數y= 在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l:y= x,過點M(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1 , 過點N1作直線l的垂線交x軸于點M2 , …;按此作法繼續(xù)下去,則點M8坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某城市的電視塔AB坐落在湖邊,數學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為米(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1 , 在C1C2的延長線上取點C3 , 使D1C3=D1C1 , 連接D1C3 , 以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2 , 在C2C3的延長線上取點C4 , 使D2C4=D2C2 , 連接D2C4 , 以C3C4為邊作等邊△A3C3C4;…且點A1 , A2 , A3 , …都在直線C1C2同側,如此下去,則△A1C1C2 , △A2C2C3 , △A3C3C4 , …,△AnCnCn+1的周長和為 . (n≥2,且n為整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明將一副三角板中的兩塊直角三角尺的直角頂點C按如圖所示的方式疊放在一起,當∠ACE<180°且點E在直線AC的上方時,他發(fā)現若∠ACE=_____,則三角板BCE有一條邊與斜邊AD平行.(寫出所有可能情況)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數y=x2+bx+c的圖象與X軸交于點A、B兩點B處的坐標為(3,0),與y軸交于c(0,﹣3),點P是直線BC下方拋物線上的動點.
(1)求出二次函數的解析式;
(2)連接PO、PC,并將△POC沿y軸對折,得到四邊形POP′C,那么是否存在點P,使得四邊形POP′C為菱形?若存在,求出點P的坐標,若存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關系,則小敏、小聰行走的速度分別是( )
A. 3km/h和4km/h B. 3km/h和3km/h
C. 4km/h和4km/h D. 4km/h和3km/h
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com