【題目】將直線L1y=2x+3沿y軸向下平移5個(gè)單位的到L2,則L1L2的距離為____

【答案】

【解析】

根據(jù)平移的規(guī)律得到L2的解析式為:y2x2,求得L2y2x2y軸交于(0,-2),根據(jù)三角形面積公式即可得到結(jié)論.

解:∵將直線L1y2x3沿y軸向下平移5個(gè)單位的到L2,

L2的解析式為:y2x2

L2y2x2y軸交于(0,-2),

如圖,

y2x3x軸交于B(0),與y軸交于A(0,3),

y2x2x軸交于F(1,0),與y軸交于E(0,-2),

OOCABC,反向延長OCEFD

ABEF

CDEF

OA3,OB,

AB

OE2,OF1,

EF

ABOCOAOB

OC

EFODOEOF,

OD,

CD,

L1L2的距離為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天清晨,甲、乙兩人在一條筆直的道路上同起點(diǎn)、同終點(diǎn)往返跑步.甲跑了分鐘后乙再出發(fā),當(dāng)乙追上甲時(shí),甲加快速度往前跑,先到達(dá)終點(diǎn)后立刻以加快后的速度返回起點(diǎn).已知甲加速前、后分別保持勻速跑,乙全程均保持勻速跑下圖是甲乙兩人之間的距離(米)與甲跑步的時(shí)間(分)的部分函數(shù)圖象.則當(dāng)乙第一次到達(dá)終點(diǎn)時(shí),甲距起點(diǎn)______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,關(guān)于x的二次函數(shù)yax22axa0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣axa0).

1)試說明點(diǎn)C在一次函數(shù)的圖象上;

2)若兩個(gè)點(diǎn)(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;

3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過點(diǎn)Ey軸的平行線,與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0a≤2時(shí),求線段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中

1)請寫出△ABC各點(diǎn)的坐標(biāo);

2)求出△ABC的面積;

3)如圖,將三角形ABC向右平移3個(gè)單位長度,再向下平移2個(gè)單位長度,得到對(duì)應(yīng)的三角形A1B1C1,并寫出點(diǎn)A1、B1、C1的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,∠C90°,DAB上一點(diǎn),以BD為直徑的⊙OAC相切于點(diǎn)E,交BC于點(diǎn)F,連接DF.

(1)求證:DF2CE

(2)BC3,sinB,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,飛機(jī)在一定高度上沿水平直線飛行,先在點(diǎn)處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達(dá)處,發(fā)現(xiàn)小島在其正后方,此時(shí)測得小島的俯角為.如果小島高度忽略不計(jì),求飛機(jī)飛行的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABO的直徑,CD為弦,且CDAB,垂足為H

1如果O的半徑為4CD=,求BAC的度數(shù);

2)若點(diǎn)E為弧ADB的中點(diǎn),連接OE,CE.求證:CE平分OCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),經(jīng)過點(diǎn)的直線軸負(fù)半軸交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為,且

1)直接寫出點(diǎn)的坐標(biāo),并求直線的函數(shù)表達(dá)式(其中用含的式子表示)

2)點(diǎn)是直線上方的拋物線上的動(dòng)點(diǎn),若的面積的最大值為,求的值;

3)設(shè)是拋物線的對(duì)稱軸上的一點(diǎn),點(diǎn)在拋物線上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形為矩形時(shí),請直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案