【題目】已知:△ABC與△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.
提出問題:如圖1,當∠ADB=∠ACB=90°時,求證:AD=BC;
類比探究:如圖2,當∠ADB≠∠ACB時,AD=BC是否還成立?并說明理由.
綜合運用:如圖3,當β=18°,BC=1,且AB⊥BC時,求AC的長.
【答案】(1)見解析;(2)仍然成立,理由見解析;(3)+1
【解析】
(1)證明△DBA≌△CAB即可;
(2)作∠BEC=∠BCE,BE交AC于E,證明△DBA≌△EAB即可;
(3)作∠BEC=∠BCE,BE交AC于E,由(2)得,AD=BC=BE=1,通過角之間的關系可求得EF=BE=1,再證△CBE∽△CFB,根據(jù)相似三角形的對應邊成比例求解即可.
(1)在△BDA和△CAB中
∴△DBA≌△CAB(AAS);
(2)結(jié)論仍然成立.
理由:作∠BEC=∠BCE,BE交AC于E.
∵∠ADB+∠ACB=∠AEB+∠BEC=180°
∴∠ADB=∠AEB.
又∠CAB=∠DBA,AB=BA
∴△DBA≌△EAB(AAS),
∴BE=AD,
∵∠BEC=∠BCE,
∴BC=BE,
∴AD=BC.
(3)作∠BEC=∠BCE,BE交AC于E,
由(2)得,AD=BC=BE=1
在Rt△ACB中,∠CAB=18°
∴∠C=72°,∠BEC=∠C= 72°
由∠CFB=∠CAB+∠DBA=36°
∴∠EBF=∠CEB-∠CFB=36°
∴EF=BE=1
在△BCF中,∠FBC=180°-∠BFC-∠C=72°
∴∠FBC=∠BEC,∠C=∠C
∴△CBE∽△CFB
∴=
令CE=x,∴1=x(x+1)
解之,x=
∴CF=
由∠FBC=∠BEC
∴BF=CF.又AF=BF
∴AC=2CF=+1
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象過點,對稱軸為直線,給出以下結(jié)論:①;②;③:④若為函數(shù)圖象上的兩點,則.其中正確的是( 。
A.①②④B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明設計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程.
已知:直線及直線外一點P.
求作:直線,使.
作法:如圖,
①在直線上取一點O,以點O為圓心,長為半徑畫半圓,交直線于兩點;
②連接,以B為圓心,長為半徑畫弧,交半圓于點Q;
③作直線.
所以直線就是所求作的直線.
根據(jù)小明設計的尺規(guī)作圖過程:
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明
證明:連接,
∵,
∴__________.
∴(______________)(填推理的依據(jù)).
∴(_____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以菱形的對角線為邊,在的左側(cè)作正方形連結(jié)并延長交于點.若正方形的面積是菱形面積的倍,,則_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了在七年級600名學生中順利開展“四點半”課堂,采用隨機抽樣的方法,從喜歡乒乓球、跳繩、籃球、繪畫四個方面調(diào)查了若干名學生,并繪制了條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合兩幅統(tǒng)計圖,回答下列問題:
(1)這次調(diào)查活動中,一共調(diào)查了 名學生;
(2)“乒乓球”所在扇形的圓心角是 度;
(3)請補全條形統(tǒng)計圖;
(4)根據(jù)本次調(diào)查情況,請你估計七年級600名學生中喜歡“乒乓球”的人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)().
(1)求出二次函數(shù)圖象的對稱軸;
(2)若該二次函數(shù)的圖象經(jīng)過點,且整數(shù),滿足,求二次函數(shù)的表達式;
(3)對于該二次函數(shù)圖象上的兩點,,設,當時,均有,請結(jié)合圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)下面尚未完成的頻率分布表和頻率分布直方圖,解答下列問題:
(1)填充頻率分布表中的空格;
(2)補全頻率分布直方圖;
(3)全體參賽學生中,競賽成績落在哪組范圍內(nèi)的人數(shù)最多?(不要求說明理由)
頻率分布表 | ||
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=BC,以BC為直徑作⊙O,AC交⊙O于點E,過點E作EG⊥AB于點F,交CB的延長線于點G.
(1)求證:EG是⊙O的切線;
(2)若GF=2,GB=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】遠遠在一個不透明的盒子里裝了4個除顏色外其他都相同的小球,其中有3個是紅球,1個是綠球,每次拿一個球然后放回去,拿2次,則至少有一次取到綠球的概率是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com