【題目】已知A、B兩點的坐標分別為 0,3),(2,0),以線段AB為直角邊,在第一象限內(nèi)作等腰直角三角形ABC,使∠BAC90°,如果在第二象限內(nèi)有一點Pa),且△ABP和△ABC的面積相等,則a_____

【答案】-

【解析】

先根據(jù)AB兩點的坐標求出OA、OB的值,再由勾股定理求出AB的長度,根據(jù)三角形的面積公式即可得出△ABC的面積;連接OP,過點PPEx軸,由△ABP的面積與△ABC的面積相等,可知SABPSPOA+SAOBSBOP,故可得出a的值.

A、B兩點的坐標分別為 0,3),(20),

OA3OB2,

,

∵△ABC是等腰直角三角形,∠BAC90°,

,

PEx軸于E,連接OP,

此時BE2a,

∵△ABP的面積與△ABC的面積相等,

,

,

解得a=﹣

故答案為﹣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O

(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.

(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC各頂點的坐標分別為A(2,2),B(4,1),C(4,4).(正方形網(wǎng)格中每個小正方形的邊長是 1個單位長度).

(1)畫出將△ABC繞點O 順時針旋轉(zhuǎn)90度得到的△A1B1C1;

(2)寫出A1、B1、C1的坐標;

(3)求出線段AC在旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線AE:與拋物線相交于另一點E,點D為拋物線的頂點.

(1)求直線BC的解析式及點E的坐標;

(2)如圖2,直線AE上方的拋物線上有一點P,過點PPFBC于點F,過點P作平行于軸的直線交直線BC于點G,當△PFG周長最大時,在軸上找一點M,在AE上找一點N,使得值最小,請求出此時N點的坐標及的最小值;

(3)在第(2)問的條件下,點R為拋物線對稱軸上的一點,在平面直角坐標系中是否存在點S,使以點N,E,R,S為頂點的四邊形為矩形,若存在,請直接寫出點S的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC在坐標平面內(nèi),三個頂點的坐標為A(0,3)、B(3,4)、C(2,2),(正方形網(wǎng)格中,每個小正方形邊長為1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1;

(2)以B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比2:1,直接寫出C2點坐標是   ;

(3)△A2BC2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與坐標軸分別交于點A、B,與直線交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點PQx軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外)。

1)求點P運動的速度是多少?

2)當t為多少秒時,矩形PEFQ為正方形?

3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖Rt△ABC,C90°矩形DEFG的頂點G、F分別在AC、BC,DEAB

1求證ADG∽△FEB;

2AG5,AD4,BE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點P,點P在第一象限.PAx軸于點A,PBy軸于點B.一次函數(shù)的圖象分別交軸、軸于點C、D,且SPBD=4,

1)求點D的坐標;

2)求一次函數(shù)與反比例函數(shù)的解析式;

3)根據(jù)圖象寫出當時,一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+cb,c均為常數(shù)的圖象經(jīng)過兩點A(2,0),B(0,﹣6).

(1)求這個二次函數(shù)的解析式;

(2)若點Cm,0)(m>2)在這個二次函數(shù)的圖象上,連接ABBC,求△ABC的面積

查看答案和解析>>

同步練習冊答案