【題目】如圖,∠DAB=∠CAE,AD=AB,AC=AE.
(1)求證△ABE≌△ADC;
(2)設(shè)BE與CD交于點(diǎn)O,∠DAB=30°,求∠BOC的度數(shù).
【答案】(1)見解析;(2)150°.
【解析】
(1)先利用角的和差證出∠DAC=∠BAE,再利用SAS證△ABE≌△ADC即可;
(2)設(shè)AB與OD交于點(diǎn)F,根據(jù)(1)中全等可得:∠ABE=∠D,根據(jù)三角形的內(nèi)角和定理可證∠BOF=∠DAB=30°,從而求出∠BOC的度數(shù).
解:(1)∵∠DAB=∠CAE
∴∠DAB+∠BAC=∠CAE+∠BAC
∴∠DAC=∠BAE
在△ABE和△ADC中
∴△ABE≌△ADC;
(2)設(shè)AB與OD交于點(diǎn)F
∵△ABE≌△ADC
∴∠ABE=∠D
∵∠BFO=∠DFA
∴∠BOF=180°-∠ABE-∠BFO=180°-∠D-∠DFA=∠DAB=30°
∴∠BOC=180°-∠BOF=150°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,∠C=70°,∠B=∠D=90°,E、F 分別是 BC、DC 上的點(diǎn),當(dāng)△AEF 的周長(zhǎng)最小時(shí),∠EAF 的度數(shù)為()
A.30°B.40°C.50°D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長(zhǎng)線上一點(diǎn)G,作GD⊥AO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,M是GE的中點(diǎn),連接CF,CM.
(1)判斷CM與⊙O的位置關(guān)系,并說明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校以“我最喜愛的體育運(yùn)動(dòng)”為主題對(duì)全校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查的運(yùn)動(dòng)項(xiàng)目有:籃球、羽毛球、乒乓球、跳繩及其它項(xiàng)目(每位同學(xué)僅選一項(xiàng)).根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的m=________,n=________;
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為________°;
(3)從選擇“籃球”選項(xiàng)的60名學(xué)生中,隨機(jī)抽取10名學(xué)生作為代表進(jìn)行投籃測(cè)試,則其中某位學(xué)生被選中的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一塊長(zhǎng)為(3a+b)米、寬為(2a+b)米的長(zhǎng)方形地塊,中間是邊長(zhǎng)為(a+b)米的正方形,規(guī)劃部門計(jì)劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化.
(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)
(2)求出當(dāng)a=10,b=12時(shí)的綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠ACB的平分線交⊙O于點(diǎn)D.若AC=6,BC=8,則BD=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是優(yōu)弧BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、D重合).
(1)當(dāng)圓心O在∠BAD內(nèi)部,∠ABO+∠ADO=50°時(shí),∠A = °;
(2)當(dāng)圓心O在∠BAD內(nèi)部,四邊形OBCD為平行四邊形時(shí),求∠C的度數(shù);
(3)當(dāng)圓心O在∠BAD外部,四邊形OBCD為平行四邊形時(shí),請(qǐng)直接寫出∠ABO與∠ADO的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾天氣持續(xù)籠罩某地區(qū),口罩市場(chǎng)出現(xiàn)熱賣.某商店用8000元購進(jìn)甲、乙兩種口罩,銷售完后共獲利2800元,其進(jìn)價(jià)和售價(jià)如下表:
甲種口罩 | 乙種口罩 | |
進(jìn)價(jià)(元/袋) | 20 | 25 |
售價(jià)(元/袋) | 26 | 35 |
(1)求該商店購進(jìn)甲、乙兩種口罩各多少袋?
(2)該商店第二次仍以原價(jià)購進(jìn)甲、乙兩種口罩,購進(jìn)乙種口罩袋數(shù)不變,而購進(jìn)甲種口罩袋數(shù)是第一次的2倍,甲種口罩按原售價(jià)出售,而乙種口罩讓利銷售.若兩種口罩銷售完畢,要使第二次銷售活動(dòng)獲利不少于3680元,則乙種口罩最低售價(jià)為每袋多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com