【題目】某校九年級(jí)數(shù)學(xué)興趣小組在研究相似多邊形問題時(shí),他們提出了兩個(gè)觀點(diǎn):
觀點(diǎn)一:將外面大三角形按圖1的方式向內(nèi)縮小,得到新三角形,它們的對(duì)應(yīng)邊間距都為1,則新三角形與原三角形相似.
觀點(diǎn)二:將鄰邊為6和10的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距都為1,則新矩形與原矩形相似.
請(qǐng)回答下列問題:
(1)你認(rèn)為上述兩個(gè)觀點(diǎn)是否正確,說明理由.
(2)如圖3,若的周長和面積都是24,,將按圖3的方式向外擴(kuò)張,得到,它們的對(duì)應(yīng)邊間距都為,,求的周長和面積.
【答案】(1)觀點(diǎn)一相似;理由見解析;觀點(diǎn)二不相似;理由見解析;(2)周長是36,面積是54.
【解析】
(1)根據(jù)相似三角形和相似多邊形的判定定理即可判定兩個(gè)觀點(diǎn)是否正確;(2)由(1)可知兩個(gè)三角形相似,求得相似比后即可求得周長及面積.
(1) 根據(jù)題意得:AB∥,BC∥,AC∥,
∴∠A=∠,∠B=∠,∠C=∠,
∴△ABC∽△,
∴觀點(diǎn)一是正確的;
圖(2)中原矩形的變成為6、10,
向外擴(kuò)張后邊長變?yōu)?/span>8、12,
此時(shí),
∴原矩形與新矩形不相似,
∴觀點(diǎn)二是不正確的.
(2)由(1)可得△ABC∽△DEF,
相似比為,
∴,
∵,
∴,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,在內(nèi)有三個(gè)正方形,且這三個(gè)正方形都有一邊在上,都有一個(gè)頂點(diǎn)在上,點(diǎn)在上,第一個(gè)正方形邊長,第二個(gè)正方形邊長,那么第三個(gè)正方形的邊長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品每天的銷售利潤(元)與銷售單價(jià)(元)之間滿足關(guān)系:,其圖像如圖所示.
(1)銷售單價(jià)為多少元時(shí),這種商品每天的銷售利潤最大?最大利潤為多少元?
(2)若該商品每天的銷售利潤不低于12元,則銷售單價(jià)的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和正方形CGEF,且D點(diǎn)在CF邊上,M為AE中點(diǎn),連接MD、MF,
(1)如圖1,請(qǐng)直接給出線段MD、MF的數(shù)量及位置關(guān)系是 ;
(2)如圖2,把正方形CGEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn),則(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)給出你的結(jié)論并證明;
(3)若將正方形CGEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°時(shí),CF邊恰好平分線段AE,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( 。
A. (,) B. (,) C. (2,-2) D. (,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,以O3為圓心,O3O為半徑畫圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4;…按此做法進(jìn)行下去,其中的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊直角三角形的鐵皮,,,.要在其中剪出一個(gè)面積盡可能大的正方形,小紅和小亮各想出了甲、乙兩種方案,請(qǐng)你幫忙算一算哪一種方案剪出的正方形面積較大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=(<600),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE、BE、DF
(1)求證:BE=CD
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).
(1)如圖①,若點(diǎn)E在上,F是DE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;
(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE﹣BE=AE.請(qǐng)你說明理由;
(3)如圖②,若點(diǎn)E在上.寫出線段DE、BE、AE之間的等量關(guān)系.(不必證明)
第26題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com