【題目】如圖,ABCDEB都是等邊三角形,點(diǎn)A、DB在同一直線上,如圖1

1)求證:DC=AE;

2)若BMCD,BNAE,垂足分別為M、N,如圖2,求證:BMN是等邊三角形.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)根據(jù)等邊三角形的性質(zhì)證明CBD≌△ABE即可解決問(wèn)題;

2)根據(jù)CBD≌△ABE可得∠BCM=BAN,進(jìn)而證明CMB≌△ANB,然后根據(jù)全等三角形的性質(zhì)及等邊三角形的判定定理得出結(jié)論.

證明:(1)∵△ABCDEB都是等邊三角形,

CB=AB,∠CBA=DBE=60°,DB=BE,

∴△CBD≌△ABESAS),

DC=AE;

2)∵BMCDBNAE,

∴∠CMB=ANB=90°,

CBD≌△ABE,

∴∠BCM=BAN

CB=AB,

∴△CMB≌△ANBAAS),

BM=BN,∠CBM=ABN

∴∠ABN+ABM=CBM+ABM=CBA=60°,即∠MBN=60°,

∴△BMN是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,E是弧BC的中點(diǎn),OE交弦BC于點(diǎn)D,點(diǎn)F為OE的延長(zhǎng)線上一點(diǎn)且OC2=OD·OF.

(1)求證:CF為⊙O的切線.

(2)已知DE=2, .

①求⊙O的半徑;②求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰,,平分上一動(dòng)點(diǎn),作平行,交F,在上取一點(diǎn),使得,連接.

1)根據(jù)題意補(bǔ)全圖形;

2)求證四邊形是平行四邊形;

3)若,寫(xiě)出一個(gè)的度數(shù),使得四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

1(用配方法);

2 ;

3;

4(50020x)10+x=6000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文教店老板到批發(fā)市場(chǎng)選購(gòu)A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購(gòu)進(jìn)A種套裝的數(shù)量是用75元購(gòu)進(jìn)B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?

(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購(gòu)進(jìn)B品牌的數(shù)量比購(gòu)進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過(guò)120元,則最少購(gòu)進(jìn)A品牌工具套裝多少套?

【答案】(1)A種品牌套裝每套進(jìn)價(jià)為10元,B種品牌套裝每套進(jìn)價(jià)為7.5元;(2)最少購(gòu)進(jìn)A品牌工具套裝17套.

【解析】試題分析:(1)利用兩種套裝的套數(shù)作為等量關(guān)系列方程求解.(2)利用總獲利大于等于120,解不等式.

試題解析:

1)解:設(shè)B種品牌套裝每套進(jìn)價(jià)為x元,則A種品牌套裝每套進(jìn)價(jià)為(x+2.5)元.

根據(jù)題意得: =2×

解得:x=7.5,

經(jīng)檢驗(yàn),x=7.5為分式方程的解,

x+2.5=10

答:A種品牌套裝每套進(jìn)價(jià)為10元,B種品牌套裝每套進(jìn)價(jià)為7.5元.

2)解:設(shè)購(gòu)進(jìn)A品牌工具套裝a套,則購(gòu)進(jìn)B品牌工具套裝(2a+4)套,

根據(jù)題意得:(13﹣10a+9.5﹣7.5)(2a+4)>120,

解得:a16,

a為正整數(shù),

a取最小值17

答:最少購(gòu)進(jìn)A品牌工具套裝17套.

點(diǎn)睛:分式方程應(yīng)用題一設(shè),一般題里有兩個(gè)有關(guān)聯(lián)的未知量,先設(shè)出一個(gè)未知量,并找出兩個(gè)未知量的聯(lián)系;二列,找等量關(guān)系,列方程,這個(gè)時(shí)候應(yīng)該注意的是和差分倍關(guān)系:三解,正確解分式方程;四驗(yàn),應(yīng)用題要雙檢驗(yàn);五答應(yīng)用題要寫(xiě)答.

型】解答
結(jié)束】
26

【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)EAD上一點(diǎn),連接AC,CB,B=AEC.

(1)如圖1,求證:CE=CD;

(2)如圖2,若∠B+CAE=120°,ACD=2BAC,求∠BAD的度數(shù);

3)如圖3,在(2)的條件下,延長(zhǎng)CE交⊙O于點(diǎn)G,若tanBAC= ,EG=2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(2,-4)在正比例函數(shù)y=kx的圖象上。

(1)求k的值;

(2)若點(diǎn)(-1,m)在函數(shù)y=kx的圖象上,試求出m的值;

(3)若A(,y1),B(-2,y2),C(1,y3)都在此函數(shù)圖象上,試比較y1,y2,y3的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,ABC是等邊三角形,點(diǎn)D是邊BC上任意一點(diǎn)(不與BC重合),點(diǎn)E在邊AC上,∠ADE=60°,∠BAD與∠CDE有怎樣的數(shù)量關(guān)系,并給予證明.

2)如圖②,在ABC中,AB=AC,點(diǎn)D是邊BC上一點(diǎn)(不與BC重合), ADE=B,點(diǎn)E在邊AC.CE=BD=3,BC=8,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形.RtABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).

(1)先將RtABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到RtA1B1C1.試在圖中畫(huà)出圖形RtA1B1C1,并寫(xiě)出A1的坐標(biāo);

(2)將RtA1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到RtA2B2C2,試在圖中畫(huà)出圖形RtA2B2C2.并計(jì)算RtA1B1C1在上述旋轉(zhuǎn)過(guò)程中C1所經(jīng)過(guò)的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行了文明在我身邊攝影比賽.已知每幅參賽作品成績(jī)記為 ().校方從600幅參賽作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計(jì)了它們的成績(jī),并繪制了如下不完整的統(tǒng)計(jì)圖表.

根據(jù)以上信息解答下列問(wèn)題:

1)統(tǒng)計(jì)表中的值為;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若80分以上(含80分)的作品將被組織展評(píng),試估計(jì)全校被展評(píng)的作品數(shù)量是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案