【題目】如圖,已知△ABC的面積為24,點D在線段AC上,點F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( 。
A.3B.4C.6D.8
【答案】D
【解析】
連接EC,過A作AM∥BC交FE的延長線于M,求出平行四邊形ACFM,根據(jù)等底等高的三角形面積相等得出△BDE的面積和△CDE的面積相等,△ADE的面積和△AME的面積相等,推出陰影部分的面積等于平行四邊形ACFM的面積的一半,求出CF×hCF的值即可.
連接DE、EC,過A作AM∥BC交FE的延長線于M,
∵四邊形CDEF是平行四邊形,
∴DE∥CF,EF∥CD,
∴AM∥DE∥CF,AC∥FM,
∴四邊形ACFM是平行四邊形,
∵△BDE邊DE上的高和△CDE的邊DE上的高相同,
∴△BDE的面積和△CDE的面積相等,
同理△ADE的面積和△AME的面積相等,
即陰影部分的面積等于平行四邊形ACFM的面積的一半,是×CF×hCF,
∵△ABC的面積是24,BC=3CF
∴BC×hBC=×3CF×hCF=24,
∴CF×hCF=16,
∴陰影部分的面積是×16=8,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠C=90°,∠B=30°,AD是△ABC的角平分線.
(1)求證:BD=2CD;
(2)若CD=2,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,D為AC中點,過點D作DE∥BC,交AB于點E.
(1)求證:AE=DE;
(2)若∠C=65°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點N(0,-1)的直線y=kx+b與圖中的四邊形ABCD有不少于兩個交點,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),則k的取值范圍____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,兩銳角的度數(shù)之比為2:1,其最短邊為1,射線CP交AB所在的直線于點P,且∠ACP=30°,則線段CP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C2018,若點P(4035,m)在第2018段拋物線C2018上,則m的值是
A. 1 B. -1 C. 0 D. 4035
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點O為坐標(biāo)原點,正方形OABC的邊OA,OC分別在x軸,y軸上,點B的坐標(biāo)為(4,4),反比例函數(shù)的圖象經(jīng)過線段BC的中點D,交正方形OABC的另一邊AB于點E.
(1)求k的值;
(2)如圖①,若點P是x軸上的動點,連接PE,PD,DE,當(dāng)△DEP的周長最短時,求點P的坐標(biāo);
(3)如圖②,若點Q(x,y)在該反比例函數(shù)圖象上運動(不與D重合),過點Q作QM⊥y軸,垂足為M,作QN⊥BC所在直線,垂足為N,記四邊形CMQN的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點P是邊BC上的動點,現(xiàn)將紙片折疊,使點A與點P重合,折痕與矩形邊的交點分別為E、F,要使折痕始終與邊AB、AD有交點,則BP的取值范圍是_________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com