如圖,在標(biāo)有刻度的直線上,從點A開始,
以AB=1為直徑畫半圓,記為第1個半圓;
以BC=2為直徑畫半圓,記為第2個半圓;
以CD=4為直徑畫半圓,記為第3個半圓;
以DE=8為直徑畫半圓,記為第4個半圓.
……,按此規(guī)律,連續(xù)畫半圓,則第4個
半圓的面積是第3個半圓面積的 倍。第個半圓的面積為 .(結(jié)果保留)
科目:初中數(shù)學(xué) 來源: 題型:
如圖,為了估算某河的寬度,在河對岸邊選定一個目標(biāo)點A,在近岸取點B,C,D,使得AB⊥BD,∠ACB=45°,∠ADB=30°,并且點B,C,D在同一條直線上.若測得CD=30米,求河寬AB(結(jié)果精確到1米,取1.73,取1.41).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為半圓的直徑,點P為AB上一動點.動點P從點A 出發(fā),沿AB勻速運動到點B,運動時間為t.分別以AP與PB為直徑作半圓,則圖中陰影部分的面積S與時間t之間的函數(shù)圖象大致為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點,C、D為y軸上兩點,經(jīng)過A、C、B的拋物線的一部分與經(jīng)過點A、D、B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線:的頂點.
(1)求A、B兩點的坐標(biāo).
(2)“蛋線”在第四象限上是否存在一點P,使得的面積最大?若存在,求出 面積的最大值;若不存在,請說明理由;
(3)當(dāng)為直角三角形時,直接寫出m的值.______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個不透明的袋子中有3個白球、2個黃球和1個紅球,這些球除顏色可以不同外其他完
全相同,則從袋子中隨機摸出一個球是黃球的概率為( )
| A. |
| B. |
| C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù).
(1) 求頂點坐標(biāo)和對稱軸方程;
(2)求該函數(shù)圖象與x標(biāo)軸的交點坐標(biāo);
(3)指出x為何值時,; 當(dāng)x為何值時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當(dāng)PA的長度等于 時,∠PAB=60°;
當(dāng)PA的長度等于 時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角坐標(biāo)系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐標(biāo)為(a,b),試求2 S1 S3-S22的最大值,并求出此時a,b的值.
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:二次函數(shù)的圖象開口向上,并且經(jīng)過原點.
(1)求的值;
(2)用配方法求出這個二次函數(shù)圖象的頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將拋物線y= (x -1)2 +3向左平移1個單位,再向下平移3個單位后所得拋物線的
解析式為
A.y= (x -2)2 B.y=x2 C.y=x2 +6 D.y= (x -2)2 +6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com