【題目】如圖, ABC的中線AD、BE相交于點(diǎn)F,下列結(jié)論正確的有

①SABD=SDCA;② SAEF=SBDF;③S四邊形EFDC=2SAEF;④SABC=3SABF

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】ADABC的中線,

SABD=SDCA=,故①正確;

BE分別是是ABC的中線,

SABE=SBCE=,

SABD=SDCA= SABE=SBCE,

SABE=SABD,

SABE- SABF =SABD- SABF,

∴SAEF=SBDF,故②正確;

∵△ABC的中線AD、BE相交于點(diǎn)F

SABF =2SAEF.

SDCA=SABE,

SDCA- SAEF =SABE- SAEF,

SABF =S四邊形EFDC,

S四邊形EFDC=2SAEF,故③正確;

∵△ABC的中線AD、BE相交于點(diǎn)F

SABE=.

SABC=2 SABE,

SABE=3 SABF,故④正確;

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC,沿BAC的平分線AB1折疊剪掉重疊部分將余下部分沿B1A1C的平分線A1B2折疊,剪掉重疊部分;將余下部分沿BnAnC的平分線AnBn+1折疊點(diǎn)Bn與點(diǎn)C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱BACABC的好角

小麗展示了確定BACABC的好角的兩種情形.情形一如圖2,沿等腰三角形ABC頂角BAC的平分線AB1折疊點(diǎn)B與點(diǎn)C重合;情形二如圖3,沿ABCBAC的平分線AB1折疊,剪掉重疊部分將余下部分沿B1A1C的平分線A1B2折疊,此時點(diǎn)B1與點(diǎn)C重合

1小麗經(jīng)過三次折疊發(fā)現(xiàn)了BACABC的好角請?zhí)骄?/span>BC不妨設(shè)BC之間的等量關(guān)系

2根據(jù)以上內(nèi)容猜想若經(jīng)過n次折疊BACABC的好角,BC不妨設(shè)BC之間的等量關(guān)系為 ;

3如果一個三角形的最小角是15°,且滿足該三角形的三個角均是此三角形的好角,則此三角形另兩個角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學(xué)知識呢?下面請你解決以下問題:

(1)觀察如圖(1)“箭頭圖”,試探究BDC與∠A、∠B、∠C之間大小的關(guān)系,并說明理由;

(2)請你直接利用以上結(jié)論,回答下列兩個問題:

如圖(2),把一塊三角板XYZ放置在ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C.若A=50°,則∠ABX+∠ACX=   

如圖(3),∠ABD,∠ACD的五等分線分別相交于點(diǎn)G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】何老師安排喜歡探究問題的小明解決某個問題前,先讓小明看了一個有解答過程的例題.

例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.

解:∵m2+2mn+2n2﹣6n+9=0

∴m2+2mn+n2+n2﹣6n+9=0

∴(m+n)2+(n﹣3)2=0

∴m+n=0,n﹣3=0∴m=﹣3,n=3

為什么要對2n2進(jìn)行了拆項呢?

聰明的小明理解了例題解決問題的方法,很快解決了下面兩個問題.相信你也能很好的解決下面的這兩個問題,請寫出你的解題過程..

解決問題:

(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;

(2)已知a、b、c是△ABC的三邊長,滿足a2+b2=10a+12b﹣61,c是△ABC中最短邊的邊長,且c為整數(shù),那么c可能是哪幾個數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)若a是(-4)2的平方根,b的一個平方根是2,求式子ab的立方根;

(2)實(shí)數(shù)a,b互為相反數(shù),c,d互為倒數(shù),x的絕對值為,求式子x2+(abcd)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,電力公司在電線桿上的C處引兩條等長的拉線CE、CF固定電線桿CD,拉線CE和地面成60°角,在離電線桿9米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB1.5

(1)CD的長(結(jié)果保留根號);

(2)EF的長(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,ADCE交于點(diǎn)F

1)求證:AD=CE;

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個鋼筋三角架三邊長分別是20厘米、50厘米、60厘米,現(xiàn)在再做一個與其相似的鋼筋三角架,而只有長為30厘米和50厘米的兩根鋼筋,要求以其中一根為一邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有多少種?寫出你的設(shè)計方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,4),Q(m,n)在函數(shù)y= (x>0)的圖象上,當(dāng)m>1時,過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A,B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C,D.QD交PA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積(  )

A. 減小 B. 增大 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

同步練習(xí)冊答案