【題目】1)解不等式組,并求出最小整數(shù)解與最大整數(shù)解的和.

2)先化簡,再求值,其中x滿足方程x2+x20

【答案】(1)不等式組最小整數(shù)解為﹣7,最大整數(shù)解為8,之和為1;(2, .

【解析】

1)分別求出不等式組中兩不等式的解集,找出解集的公共部分確定出不等式組的解集,進而求出所求即可;

2)原式利用除法法則變形,約分后計算得到最簡結(jié)果,求出x的值,代入計算即可求出值.

1

得:x≤8,

得:x7.5,

不等式組的解集為﹣7.5≤x≤8,

則不等式組最小整數(shù)解為﹣7,最大整數(shù)解為8,之和為1;

2)原式=,

x2+x20,得到(x1)(x+2)=0,

解得:x1(舍去)或x=﹣2,

x=﹣2時,原式=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場用24000元購入一批空調(diào)然后以每臺3000元的價格銷售,因天氣炎熱,空調(diào)很快售完;商場又以52000元的價格再次購入該種型號的空調(diào),數(shù)量是第一次購入的2,但購入的單價上調(diào)了200,售價每臺也上調(diào)了200

1商場第一次購入的空調(diào)每臺進價是多少元?

2商場既要盡快售完第二次購入的空調(diào),又要在這兩次空調(diào)銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調(diào)按每臺九五折出售,最多可將多少臺空調(diào)打折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推進郴州市創(chuàng)建國家森林城市工作,盡快實現(xiàn)讓森林走進城市,讓城市擁抱森林的構(gòu)想,今年三月份,某縣園林辦購買了甲、乙兩種樹苗共1000棵,其中甲種樹苗每棵40元,乙種樹苗每棵50元,據(jù)相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%90%

1)若購買甲、乙兩種樹苗共用去了46500元,則購買甲、乙兩種樹苗各多少棵?

2)若要使這批樹苗的成活率不低于88%,則至多可購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知△ABC與△DEF均為等邊三角形,且AB2,DB1,現(xiàn)△ABC靜止不動,△DEF沿著直線EC以每秒1個單位的速度向右移動設(shè)△DEF移動的時間為x,△DEF與△ABC重合的面積為y,則能大致反映yx函數(shù)關(guān)系的圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在RtABC中,∠ABC90°,BF為斜邊上的高,在射線AB上有點D,連接DF,作∠DFE90°,FE交射線BC于點E

(問題發(fā)現(xiàn))如圖1所示,如果ABCB,則DFEF的數(shù)量關(guān)系為DF   EF(選填>,<,=)

(類比探究)如圖2所示,如果改變RtABC中兩直角邊的比例,使得AB2BC,則DFEF還存在①中的關(guān)系嗎?

(拓展延伸)如圖3所示,在RtABC中,如果已知BC,AB3EF,試求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.

(1)求該型號自行車的進價和標價分別是多少元?

(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是弧AB的中點,弦CDAB相交于E

1)若∠AOD45°,求證:CEED;(2)若AEEO,求tanAOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx2x軸交于點A,以OA為斜邊在x軸上方作等腰直角三角形OAB,將OAB沿x軸向右平移,當點B落在直線yx2上時,則OAB平移的距離是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號)

根據(jù)以上信息,解答下列問題:

(1)該班共有  名學生;

(2)在扇形統(tǒng)計圖中,185型校服所對應(yīng)的扇形圓心角的大小為  

(3)該班學生所穿校服型號的眾數(shù)為   ,中位數(shù)為  ;

(4)如果該校預計招收新生600名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學生大約有多少名?

查看答案和解析>>

同步練習冊答案