【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,CE=4,則四邊形ACEB的周長(zhǎng)為

【答案】10+2
【解析】解:∵∠ACB=90°,DE⊥BC, ∴AC∥DE.
又∵CE∥AD,
∴四邊形ACED是平行四邊形.
∴DE=AC=2.
在Rt△CDE中,由勾股定理得CD= =2
∵D是BC的中點(diǎn),
∴BC=2CD=4
在△ABC中,∠ACB=90°,
由勾股定理得AB= =2
∵D是BC的中點(diǎn),DE⊥BC,
∴EB=EC=4.
∴四邊形ACEB的周長(zhǎng)=AC+CE+EB+BA=10+2 ,
所以答案是:10+2
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和三角形中位線定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠BAC=90°,AD⊥BC,垂足為D,則給出下列結(jié)論:
①AB與AC互相垂直
②AD與AC互相垂直
③點(diǎn)C到AB的垂線段是線段AB
④點(diǎn)A到BC的距離是線段AD
⑤線段AB的長(zhǎng)度是點(diǎn)B到AC的距離
⑥線段AB是點(diǎn)B到AC的距離.
其中正確的有( 。

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知xm=5,xn=7,求x2m+n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2

(1)畫出△A1B1Cl和△A2B2C2

(2)P(a,b)是△ABC的AC邊上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1、P2,請(qǐng)寫出點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.

(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);

(2)求直線BD的解析式;

(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;

(4)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:

(1)如果n =8時(shí),那么S的值為
(2)根據(jù)表中的規(guī)律猜想:用n的代數(shù)式表示S的公式為S=2+4+6+8+…+2n =;
(3)根據(jù)上題的規(guī)律計(jì)算102+104+106+…+2006的值(要有計(jì)算過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前節(jié)能燈在各城市已基本普及,今年某市面向縣級(jí)及農(nóng)村地區(qū)推廣,為響應(yīng)號(hào)召,朝陽(yáng)燈飾商場(chǎng)用了4200元購(gòu)進(jìn)甲型和乙型兩種節(jié)能燈.這兩種型號(hào)節(jié)能燈的進(jìn)價(jià)、售價(jià)如表:

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

甲型

25

30

乙型

45

60

特別說(shuō)明:毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià)
(1)朝陽(yáng)燈飾商場(chǎng)銷售甲型節(jié)能燈一只毛利潤(rùn)是元;
(2)朝陽(yáng)燈飾商場(chǎng)購(gòu)買甲,乙兩種節(jié)能燈共100只,其中買了甲型節(jié)能燈多少只?
(3)現(xiàn)在朝陽(yáng)燈飾商場(chǎng)購(gòu)進(jìn)甲型節(jié)能燈m只,銷售完節(jié)能燈時(shí)所獲的毛利潤(rùn)為1080元.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)解分式方程: =3+
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過(guò)平移后得到△A1B1C1 , 點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+6,b﹣2 ).

(1)直接寫出點(diǎn)A1 , B1 , C1的坐標(biāo).
(2)在圖中畫出△A1B1C1
(3)連接A A1 , 求△AOA1的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案