【題目】某商場銷售一批襯衫,平均每天可銷售出20件,每件盈利40元,為擴大銷售盈利減小庫存,商場決定采取適當?shù)慕祪r措施,但要求每件盈利不少于20元,經(jīng)調(diào)查發(fā)現(xiàn)。若每件襯衫每降價1元,則商場每天可多銷售2件.
(1)若每件襯衫降價4元,則每天可盈利多少元?
(2)若商場平均每天盈利1200元。則每件襯衫應降價多少元?
(3)若商場為增加效益最大化,求每件襯衫應降價多少元時,商場平均每天盈利最多?每天最多盈利多少元?
【答案】(1)若每件襯衫降價4元,則每天可盈利1008元;(2)每件襯衫應降價20元;(3)每件襯衫降價15元時,商場平均每天盈利最多,共1250元
【解析】
(1)由題意可直接根據(jù)每件的利潤×銷售量=總利潤,求出結(jié)果;
(2)首先根據(jù)盈利1200元,列出一元二次方程:,然后解出即可;
(3)根據(jù)題意表示出商場每天盈利,并對其進行配方從而求出每件襯衫應降價多少元時,商場平均每天盈利最多.
解:設(shè)每天利潤為元,每件襯衫降價元,
根據(jù)題意得.
(1)當時,(元)
答:若每件襯衫降價4元,則每天可盈利1008元.
(2)當時,,
解之得,.
根據(jù)題意要盡快減少庫存,所以應降價20元.
答:每件襯衫應降價20元.
(3)解:商場每天盈利
.
所以當每件襯衫應降價15元時,商場盈利最多,共1250元.
答:每件襯衫降價15元時,商場平均每天盈利最多.
科目:初中數(shù)學 來源: 題型:
【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.
(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;
(2)求一次打開鎖的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某球室有三種品牌的個乒乓球,價格是7,8,9(單位:元)三種.從中隨機拿出一個球,已知(一次拿到元球).
(1)求這個球價格的眾數(shù);
(2)若甲組已拿走一個元球訓練,乙組準備從剩余個球中隨機拿一個訓練.
①所剩的個球價格的中位數(shù)與原來個球價格的中位數(shù)是否相同?并簡要說明理由;
②乙組先隨機拿出一個球后放回,之后又隨機拿一個,用列表法(如圖)求乙組兩次都拿到8元球的概率.
又拿 先拿 | |||
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度/℃ | …… | -4 | -2 | 0 | 2 | 4 | 4.5 | …… |
植物每天高度增長量/mm | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
由這些數(shù)據(jù),科學家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請你選擇一種適當?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時,這種植物每天高度的增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線與直線交于,兩點,點是拋物線的頂點.
(1)求拋物線的解析式;
(2)點是直線上方拋物線上的一個動點,其橫坐標為,過點作軸的垂線,交直線于點,當線段的長度最大時,求的值及的最大值.
(3)在拋物線上是否存在異于、的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)域平面示意圖如圖,點O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將進貨單價為30元的商品以每個40元的價格售出時,平均每月能售出600個,調(diào)查表明:這種商品的售價每上漲1元,其銷售量就減少10個.
(1)為了使平均每月有10000元的銷售利潤且盡快售出,這種商品的售價應定為每個多少元?
(2)當該商品的售價為每個多少元時,商場銷售該商品的平均月利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若二次函數(shù)的圖象與軸分別交于點、,且過點.
(1)求二次函數(shù)表達式;
(2)若點為拋物線上第一象限內(nèi)的點,且,求點的坐標;
(3)在拋物線上(下方)是否存在點,使?若存在,求出點到軸的距離;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com