【題目】為促進節(jié)能減排,倡導節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中的折線反映了每戶居民每月用電電費y(單位:元)與用電量x(單位:度)間的函數(shù)關(guān)系.

1)根據(jù)圖象,階梯電價方案分為三個檔次,請?zhí)顚懴卤恚?/span>

2)小明家某月用電70度,需交電費  元;

3)求第二檔每月電費y(元)與用電量x(單位:度)之間的函數(shù)表達式;

4)在每月用電量超過230度時,每度電比第二檔多m元,小剛家某月用電290度,繳納電費153元,求m的值.

【答案】1第二檔:140<x230,第三檔x>230;

231.5;

3第二檔每月電費y()與用電量x()之間的函數(shù)關(guān)系式為:y=12x7(140<x230);

4m的值為0.25.

【解析】試題分析:

(1)根據(jù)圖中橫坐標的數(shù)據(jù)可得到第二檔和第三檔的起止范圍;

2)根據(jù)函數(shù)圖象先求出第一段圖象所對應的函數(shù)的解析式,再把代入解析式求得對應的函數(shù)值即可;

3)設(shè)第二檔的函數(shù)解析式為: ,代入點(14063)和點(230,108)列出方程組,解方程組求得k、b的值即可得到第二檔的函數(shù)解析式;

(4)根據(jù)圖象可得出:用電230度,需要付費108元;用電140度,需要付費63元;

由此可得第二檔電費為每度(10863)÷(230140)=0.5();同理可得第三檔電費為每度(153-108)÷(290-230)=0.75(元);由此可得:m=0.75-0.5=0.25.

試題解析

(1)根據(jù)函數(shù)圖象可以得出,階梯電價方案分為三個檔次,利用橫坐標可得出:

第二檔:140<x230,第三檔x>230

(2)根據(jù)第一檔范圍是:0<x140,

根據(jù)圖象上點的坐標得出:設(shè)解析式為:y=kx,(14063)代入得出:k=63140=0.45,

y=0.45x,

x=70,y=0.45×70=31.5(),

故答案為:31.5;

(3)設(shè)第二檔每月電費y()與用電量x()之間的函數(shù)關(guān)系式為:y=ax+c,

(140,63)(230,108)代入得出: 解得 ,

第二檔每月電費y()與用電量x()之間的函數(shù)關(guān)系式為:y=12x7(140<x230);

(4)根據(jù)圖象可得出:用電230度,需要付費108元,用電140度,需要付費63元,

,10863=45(),230140=90(),

45÷90=0.5(/),

則第二檔電費為0.5/度;

∵小剛家某月用電290度,交電費153元,

290230=60(),153108=45()

∴第三檔電費為45÷60=0.75(/),

m=0.750.5=0.25

答:m的值為0.25.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:9x2﹣4=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(5,y﹣1),B(x+3,﹣2)分別在第一象限、第三象限內(nèi),分別求x、y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】選擇適當方法解下列方程:

(1) ; (2);(3);

(4) ;(5);(6).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個兩位數(shù),個位數(shù)字與十位數(shù)字的和是9,如果將個位數(shù)字與十位數(shù)字對調(diào)后所得的新數(shù)比原數(shù)大9,求這個兩位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A. 面積相等的兩個三角形全等

B. 全等三角形的面積一定相等

C. 形狀相同的兩個三角形全等

D. 兩個等邊三角形一定全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC的三邊長分別為ab,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是真命題的是( )

A.同角的補角相等B.兩條直線被第三條直線所截,同位角相等

C.兩個無理數(shù)的和仍是無理數(shù)D.有公共頂點且相等的兩個角是對頂角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰ABC中,ADBC于點D,且AD=BC,則ABC底角的度數(shù)為( )

A. 45° B. 75° C. 60° D. 45°或15°或75°

查看答案和解析>>

同步練習冊答案