【題目】如圖,在四邊形ABCD中,AB=DC,E、F分別是AD、BC的中點(diǎn),G、H分別是對(duì)角線(xiàn)BD、AC的中點(diǎn).
(1)求證:四邊形EGFH是菱形;
(2)若AB=1,則當(dāng)∠ABC+∠DCB=90°時(shí),求四邊形EGFH的面積.
【答案】(1)見(jiàn)解析;(2)
【解析】
試題分析:(1)利用三角形的中位線(xiàn)定理可以證得四邊形EGFH的四邊相等,即可證得;
(2)根據(jù)平行線(xiàn)的性質(zhì)可以證得∠GFH=90°,得到菱形EGFH是正方形,利用三角形的中位線(xiàn)定理求得GE的長(zhǎng),則正方形的面積可以求得.
(1)證明:∵四邊形ABCD中,E、F、G、H分別是AD、BC、BD、AC的中點(diǎn),
∴FG=CD,HE=CD,F(xiàn)H=AB,GE=AB.
∵AB=CD,
∴FG=FH=HE=EG.
∴四邊形EGFH是菱形.
(2)解:∵四邊形ABCD中,G、F、H分別是BD、BC、AC的中點(diǎn),
∴GF∥DC,HF∥AB.
∴∠GFB=∠DCB,∠HFC=∠ABC.
∴∠HFC+∠GFB=∠ABC+∠DCB=90°.
∴∠GFH=90°.
∴菱形EGFH是正方形.
∵AB=1,
∴EG=AB=.
∴正方形EGFH的面積=()2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛畫(huà)了一張對(duì)稱(chēng)的臉譜,他對(duì)妹妹說(shuō):“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形ABCD的兩條對(duì)角線(xiàn)分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線(xiàn)BD上一點(diǎn),則PM+PN的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(-2,-3),點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱(chēng),則點(diǎn)B的坐標(biāo)為___________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com