【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為4的等邊的邊在軸的負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過(guò)邊的中點(diǎn),且與邊交于點(diǎn).
(1)求的值;
(2)連接,,求的面積;
(3)若直線與直線平行,且與的邊有交點(diǎn),直接寫(xiě)出的取值范圍.
【答案】(1);(2)3;(3).
【解析】
(1)過(guò)點(diǎn)作于,根據(jù)等邊三角形的性質(zhì)可求出點(diǎn)C的坐標(biāo),把點(diǎn)C的坐標(biāo)代入反比例函數(shù)即可求出k的值;
(2)過(guò)點(diǎn)作于,過(guò)點(diǎn)作于.再根據(jù)等邊三角形的性質(zhì)可求得AF,BF,從而求出點(diǎn)A的坐標(biāo).再用待定系數(shù)法求出直線OA的解析式,讓反比例函數(shù)解析 式與直線OA的解析式聯(lián)立解方程組求出點(diǎn)D的坐標(biāo),三角形OCD的面積=四邊形ODCE的面積-三角形OCE的面積.從而得到求解.
(3)由圖形可知當(dāng)過(guò)點(diǎn)C時(shí)n有最大值,當(dāng)時(shí)n有最小值.
(1)如圖1,過(guò)點(diǎn)作于,
∵是等邊三角形,
∴,,
∵是中點(diǎn),
∴.
在中,,,
∴,
,
∴,
∴,
∴.
(2)如圖2.過(guò)點(diǎn)作于,過(guò)點(diǎn)作于.
則,,
∴,
設(shè)直線解析式為,則,
∴,
∴,
由(1)可知反比例函數(shù)解析式為,
聯(lián)立方程組:,
解得:或(舍),
∴,
∴
.
(3).理由如下:
∵,,
∴=1.
∵直線與直線平行,
∴m=1.
∴直線解析式為.
∴把代入,得:
n=.
把代入,得:
n=0.
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過(guò)B、M兩點(diǎn)的⊙O交BC于G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫(xiě)出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫(xiě)出線段BF的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一組數(shù)據(jù)a1,a2,a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2,a2+2,a3+2的平均數(shù)和方差分別是( )
A. 4,3B. 6,3C. 3,4D. 6,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)M為二次函數(shù)y=﹣(x﹣b)2+4b+1圖象的頂點(diǎn),直線y=mx+5分別交x軸正半軸,y軸于點(diǎn)A,B.
(1)判斷頂點(diǎn)M是否在直線y=4x+1上,并說(shuō)明理由.
(2)如圖1,若二次函數(shù)圖象也經(jīng)過(guò)點(diǎn)A,B,且mx+5>﹣(x﹣b)2+4b+1,根據(jù)圖象,寫(xiě)出x的取值范圍.
(3)如圖2,點(diǎn)A坐標(biāo)為(5,0),點(diǎn)M在△AOB內(nèi),若點(diǎn)C(,y1),D(,y2)都在二次函數(shù)圖象上,試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B為y軸上的一動(dòng)點(diǎn),將線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得線段BC,若點(diǎn)C恰好落在反比例函數(shù)y=的圖象上,則點(diǎn)B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某小區(qū)居民使用共享單車(chē)次數(shù)的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車(chē)的次數(shù)統(tǒng)計(jì)如下:
使用次數(shù) | 0 | 5 | 10 | 15 | 20 |
人數(shù) | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內(nèi)使用共享單車(chē)次數(shù)的中位數(shù)是 次,眾數(shù)是 次,平均數(shù)是 次.
(2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車(chē)的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OE=DE,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)B、E在反比例函數(shù)y=的圖象上,OA=5,OC=1,則△ODE的面積為( 。
A.2.5B.5C.7.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)正方形ABCD的頂點(diǎn)A在其外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為E,連接BE、DE,其中DE交直線AP于點(diǎn)F.
(1)依題意補(bǔ)全圖1.
(2)若∠PAB=30°,求∠ADF的度數(shù).
(3)如圖,若45°<∠PAB<90°,用等式表示線段AB,FE,FD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com